Dear Lawrence, Yes, I have a term where the test function and the basis function are evaluated in separate integrals, this is why I wrote Q*mu*dx. Can I assemble them separately? E.g. Q1 = assemble(v*dx) Q2 = assemble(mu*dx) and then multiply the arrays? This is how I did it in my own FEM code, but I want to understand how to do it using Firedrake as well. Thanks. Best, Anna. On 19/10/15 11:46, Lawrence Mitchell wrote:
-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1
Dear Anna,
On 16/10/15 19:03, Anna Kalogirou wrote:
Dear all,
Can I use an assembled matrix into a bilinear form?
E.g. I want to write something like
mu1 = Function(V) mu = TrialFunction(V) v = TestFunction(V)
Q = assemble(v*dx) lhs = inner(grad(mu),grad(v))*dx + Q*mu*dx I'm confused, Q*mu*dx is not a bilinear form (it has a trial function but no test function).
Lawrence -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAEBAgAGBQJWJMoeAAoJECOc1kQ8PEYvWEQIALKqAik+xEr+64+uzuASvJJM Gl/+kr/hIV8D39a0cYYT8uZb3l0qhW8CQS4ibz0rW4vCjYDTpNhiqnScU+8I9U2F +aOcTZAu48P0DgU3GwoamRJ2VOtvTROFyZARLNwTrQNn7Bokua0CGvxbQB+STF4D kmaL27Cp6kZWTynHVrFR6PZuUBPzYrVsGZL2EASi092sIXQS0Uvc2WE9MpioKyHh 6a2LR+8oadFskaWtAK8paAomMod6josITPzxs+HhejW0fQZoK+v6RIJsJxsrC774 qnbosnq0+MUhi1P9u6ZBy8AHrIzDyseVjNhT9DX5+TI8dFZLc2b07mjwVJZxkaU= =Ss6c -----END PGP SIGNATURE-----
_______________________________________________ firedrake mailing list firedrake@imperial.ac.uk https://mailman.ic.ac.uk/mailman/listinfo/firedrake