Dear Lawrence,

Yes, I have a term where the test function and the basis function are evaluated in separate integrals, this is why I wrote Q*mu*dx. Can I assemble them separately? E.g.
Q1 = assemble(v*dx)
Q2 = assemble(mu*dx)

and then multiply the arrays? This is how I did it in my own FEM code, but I want to understand how to do it using Firedrake as well.
Thanks.

Best, Anna.


On 19/10/15 11:46, Lawrence Mitchell wrote:
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Dear Anna,

On 16/10/15 19:03, Anna Kalogirou wrote:
Dear all,

Can I use an assembled matrix into a bilinear form?

E.g. I want to write something like

mu1 = Function(V) mu = TrialFunction(V) v = TestFunction(V)

Q = assemble(v*dx) lhs = inner(grad(mu),grad(v))*dx + Q*mu*dx
I'm confused, Q*mu*dx is not a bilinear form (it has a trial function
but no test function).

Lawrence
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)

iQEcBAEBAgAGBQJWJMoeAAoJECOc1kQ8PEYvWEQIALKqAik+xEr+64+uzuASvJJM
Gl/+kr/hIV8D39a0cYYT8uZb3l0qhW8CQS4ibz0rW4vCjYDTpNhiqnScU+8I9U2F
+aOcTZAu48P0DgU3GwoamRJ2VOtvTROFyZARLNwTrQNn7Bokua0CGvxbQB+STF4D
kmaL27Cp6kZWTynHVrFR6PZuUBPzYrVsGZL2EASi092sIXQS0Uvc2WE9MpioKyHh
6a2LR+8oadFskaWtAK8paAomMod6josITPzxs+HhejW0fQZoK+v6RIJsJxsrC774
qnbosnq0+MUhi1P9u6ZBy8AHrIzDyseVjNhT9DX5+TI8dFZLc2b07mjwVJZxkaU=
=Ss6c
-----END PGP SIGNATURE-----

_______________________________________________
firedrake mailing list
firedrake@imperial.ac.uk
https://mailman.ic.ac.uk/mailman/listinfo/firedrake