4

Multi-dimensional Formulation

In this chapter we consider the implementation and formulation details used in
constructing multi-dimension spectral/hp element approximations. This chap-
ter directly builds upon the expansion bases within standard regions defined in
chapter 3. Although more involved, the construction of a multiple dimensions is
very similar to the one-dimensional approach discussed in chapter 2. By analogy
to the one-dimensional formulation, the operations of integration and differen-
tiation of a known function can be performed at an elemental level and may
therefore be considered local or elemental operations. We therefore start our
multi-dimensional discussion in section 4.1 by considering local operations. To
extend these techniques to a C° multi-dimensional basis, as typically adopted in
a Galerkin construction, we then require global operations such as matrix num-
bering, connectivity and assembly. These topics are introduced in 4.2. In section
4.3 we conclude our formulation by discussing more specialised topics relating to
the pre- and post-processing aspects of a general multi-dimensional solver such
as boundary condition representation, curvilinear mesh generation and consis-
tent particle tracking in high-order elements. Finally, in section 4.4, we suggest a
series of programming exercises to help construct a multi-dimensional Galerkin
approximation.

Although integration and differentiation are important local operations the
elemental mapping which allows us to generalise the local operations in a stan-
dard region to elements of general shape is equally important. The structure
of section 4.1 therefore initially introduces integration and differentiation in the
standard regions in sections 4.1.1 and 4.1.2. Subsequently in section 4.1.1, we
introduce the concept of an elemental mapping which then allows us to discuss
how to perform integration and differentiation in general elemental regions. Hav-
ing defined these concepts, we are then able to discuss elemental transformation
in section 4.1.5 for representing general functions over an elemental region using
either collocation or Galerkin type projections. Within this section we also intro-
duce a matrix notation which is helpful in illustrating the necessary operations
to numerically perform many of the local operations. The matrix construction
is convenient to clarify many of the numerical operations, however, when us-
ing tensorial based operations, it is computationally more efficient to use the
sum-factorisation technique as detailed in section 4.1.6. Since all the techniques
discussed in section 4.1 only apply on a single elemental region, they may equally
well be used on the modified or orthogonal bases discussed in chapter 3. Many
of the local operations are also relevant to the non-tensorial expansion bases for
simplexes as defined in chapter 3. When using the non-tensorial basis we can-
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not use the sum-factorisation technique and so matrix operators can be applied.
Finally, we note that most of the local operations are equally valid for the stan-
dard Galerkin formulation introduced in chapter 2 or the discontinuous Galerkin
formulation which is introduced in chapters 6 and 7.

For the standard Galerkin formulation we have seen in chapter 2 that nor-
mally a global C° continuous expansion is required. This was also the motiva-
tion behind the derivation of modified expansion bases defined in chapter 3. To
construct a multiple domain C° expansion from the elemental contributions in
a computationally efficient manner requires the introduction of suitable global
operation. We, therefore, start our discussion on global operations in section
4.2.1 by introducing the concept of global assembly. Using the previously de-
fined vector notation we illustrate, from a matrix operation point of view, how
the elemental degrees of freedom are assembled (or combined) to make a global
C° system. Implicit in this discussion is how local degrees of freedom have to
be numbered and orientated. The global assembly operation can be used for an
explicit and implicit implementation of the problem of interest. However, im-
plicit implementation typically leads to global matrix systems the construction
of which is discussed in section 4.2.2 using the elemental matrix notation in-
troduced in section 4.1.5. Finally, having constructed a global matrix system in
section 4.2.3 we discuss the static condensation technique which makes use of
natural boundary/interior decomposition of the spectral/hp element expansion
to decouple the interior modes from the boundary degrees of freedom. We then
complete our discussion of global operations in section 4.2.4 by presenting how to
set up a global numbering scheme and then using it to impose Dirichlet boundary
conditions with examples in two-dimensions.

4.1 Local Elemental Operations

As a motivation for the topics to be introduced in this section we recall that
to solve the Galerkin formulation of the Laplace equation we need to evaluate
within every elemental region of our mesh the inner products of the form

(Vor Vo) = [ ViV du = / Vo, Vo, dE,
Qe Qst

where Q¢ denotes the element region, {25 denotes the standard elemental region
such that £ € Qg, and J is the Jacobian of the mapping between these two
regions. From the structure of this inner product we note that there are three
important concepts we need to understand how to implement. Firstly, we need
to know how to integrate within 4, then we need to know how to differentiate,
initially in the standard region 4 and then in the elemental region Q¢. To
perform the differentiation (and integration) within the elemental region we need
to define a mapping between these regions which is the third concept we will
discuss in this section.

In section 2.4.1 we discussed an accurate form of one-dimensional numer-
ical integration known as Gaussian integration. This is generally preferred in
spectral/hp element methods as polynomial integrands of order 2P can be ex-
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actly integrated using a summation over O(P) points. In section 4.1.1 we will
review how the one-dimensional Gaussian integration can be applied to the stan-
dard regions, €24, for multi-dimensional expansions.

Similarly, in section 2.4.2 we illustrated how the differentiation of polyno-
mial functions in physical space using the derivatives of a Lagrange polynomial
through the Gaussian quadrature zeros. In section 4.1.2, we extend this concept
to the standard multi-dimensional regions, (2.

Having defined integration and differentiation in the standard regions in sec-
tion 4.1.3, we extend these ideas to an arbitrary region by introducing appro-
priate elemental mappings. In section 4.1.5, we illustrate how to represent a
multi-dimensional function within a general elemental region, thereby defining
the idea of a forward and backward transformation. To this end, we introduce
a matrix notation. Finally, in section 4.1.6 we discuss the use of a numerically
efficient technique, known as sum factorisation, to evaluate the salient numeri-
cal operations required in a Galerkin hp/spectral element formulation based on
tensor product expansion.

4.1.1 Integration within the Standard Region Qg

The one-dimensional integral of a smooth function may be approximated using
Gaussian quadrature as a summation of the form (see also section 2.4.1.1 and
appendix B)

1 Q-1
[ () ds = 3 wiuls) + R,

where &; is the Q discrete quadrature points or zeros at which the function u(§) is
evaluated and w; is the set of coefficients of weights. The term R(u) denotes the
approximation error which, providing a sufficient number of quadrature points
are used, will be zero if the integrand is a polynomial. For example, if u(&) rep-
resents the local expansion basis u(§) = ¢,(£) then providing there are sufficient
quadrature points there will be no approximation error. We recall that the clas-
sical Gauss-Legendre quadrature does not include any zeros at the ends of the
interval. If both end-points are included the integration is referred to as Gauss-
Lobatto and if only one end-point is included the integration is referred to as
Gauss-Radau. A more general form of quadrature involving a weight function in
the integrand is referred to as Gauss-Jacobi (see appendix B).

4.1.1.1 Quadrilateral and Hexahedral Regions

A trivial extension of the one-dimensional Gaussian rule is to the two-dimensional
standard quadrilateral region and similarly to the three-dimensional hexahedral
region. Integration over Q2 = {—1 < &;,& < 1} is mathematically defined as
two one-dimensional integrals of the form

REC {/_llu@l,sg)

dfl} dés.
&2
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So if we replace the right-hand-side integrals with our one-dimensional Gaussian
integration rules we obtain

Q1—1 Q2—1

/QZU(&,&) déy déy ~ > wid > wy ul6i &) ¢
=0

=0

where 1 and @2 are the number of quadrature points in the £; and & directions,
respectively. This expression will be exact if u(£1,&2) is a polynomial and Q1, Q2
are chosen appropriately. To numerically evaluate this expression the summation
over ‘¢ must be performed Q1 times at every &; point, that is,

Q1—1
/622@4(51,52) &y déo ~ Y w; f(6u),
gt
F&) = Y wy i, &oy)-
=0

The corresponding three-dimensional numerical integral for Q3 = {—1 < &1, &,
53 S 1} iS

Q1—-1 Q2—1 Qs—1
/Q3 u(6r,82,83) dy déa dés ~ > wi{ Y w; { > wku(«fu,&jfsk)} ;

i=0 j=0 i=0

which is evaluated in a similar fashion to the two-dimensional case except that
the innermost summation must be evaluated @1 - Q2 times. Although any type
of Gauss-Legendre quadrature may be used, the preferred distributions include
the end-points as boundary conditions may then be more easily imposed.

4.1.1.2 Simplexr and Hybrid Regions

Triangular Region

Unlike the structured regions, the standard triangular regions 72 = {1 < & <
&1,82;&1+E& < 0} (see figure 3.6) expressed in Cartesian coordinates 1, 2 are not
very conveniently represented in terms of one-dimensional Gaussian integration
as the upper boundary of the region is described in terms of both coordinates.
Since the one-dimensional rule is expressed in terms of an interval with constant
bounds (that is, [-1,1]) we need to perform a coordinate transformation before
we can apply this technique.

The transformation of a triangular region into a region bounded by constants
is equivalent to mapping the triangular region into a quadrilateral as described in
section 3.2.1. The collapsed Cartesian system is therefore suitable for Gauss inte-
gration in the unstructured regions. For modal expansions, integration in terms
of the collapsed Cartesian system remains accurate as the generalised tensorial

Implementation
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bases are polynomials in both the Cartesian and the collapsed Cartesian sys-
tems. Although alternative integration schemes using the barycentric coordinate
system (see section 3.2.1) have been developed by various researchers including
Dunavant [145] and Jinyun [506], this type of integration does not take advan-
tage of the tensorial construction of the unstructured basis as shown in section
4.1.6. The order of these schemes also tends to be restricted by the numerical
process of evaluating the quadrature weights.

The two-dimensional collapsed Cartesian system (see section 3.2.1) is defined
by the coordinate transformation:

77122%—17 n2 = &a.

If we express our integral over the region 72, the collapsed Cartesian system
(n1,m2), we obtain

1 —&2
/T u(6,6) dErdes = [ 1 [ &) derde

/_11 /_11u(m,772) UGl

O(m,m2)
where 0(&1,&2)/0(n1,m2) is the Jacobian of the Cartesian to local coordinate
transformation and can be expressed in terms of 71,72 by

0(&1, &) _ (1—772>_

8(7717 772) 2

dnidns, (4.1)

The last term in equation (4.1) can be approximated using one-dimensional
Gaussian quadrature rules to arrive at

1 1 Q1—1 Q2—1 )
/1/1u(771,772) (1522 dipydno = Z w; Z w; u(771i;772j)( _2%)
-1J- =0 =0

(4.2)
where 115,725 are the quadrature points in the 7, and 7, directions. The weights
w; and w; used in equation (4.2) correspond to the standard Gauss-Legendre
rule which may or may not include the end-points. However, a more general
quadrature rule, which we shall refer to as Gauss-Jacobi quadrature, includes
the factor (1 —&)*(1 + £)? in the integrand, that is,

1 Q-1
/ (-6 +O%u(E)de = 3 wu(e™?),
1=0

-1

where w®? and & # are the weights and zeros which correspond to the choice
of the exponents a and 3 (see Ghizzetti and Ossicini [180]). If (& = 5 = 0)
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we recover the standard Gauss-Legendre quadrature rules. The Gauss-Jacobi
quadrature rules can be derived for a Lobatto and Radau distribution of zeros
as well as the classical Gaussian distribution (see appendix B).

The Gauss-Jacobi rules are convenient in evaluating the integral (4.2) since
we are able to include the Jacobian term 9(&1,&2)/9(n1,1m2) = (1—?73) directly
in the quadrature weights by setting o = 1,3 = 0. Accordingly, the integration
scheme over 72 becomes:

Qi1—-1 Q2—1

/ / u(m,n2) (F52) dipdns = Zw o Zw u(n1i; m25)
where
1,0
~1,0 W
W = 5

The Gauss-Jacobi rule therefore uses fewer quadrature points than the standard
Gauss-Legendre quadrature rule to achieve an equivalent accuracy.

When choosing a distribution of points on which to integrate, the Lobatto-
type quadrature is preferred since it includes the end-points of the interval [—1, 1],
which is helpful when setting boundary conditions. However, when integrating
over a triangular region we note that the use of the Radau distribution in the
72 direction [which includes the point at (n2 = —1)] is advantageous as it avoids
the need for explicit calculation of any information at the degenerate vertex
(m = —1,m2 = 1). Although this vertex does not cause any problems when inte-
grating over 72 it does present added complications when differentiating in 72
(see section 4.1.2). The distribution of quadrature points in T2forQi=Q>=7
using a Gauss-Lobatto-Legendre scheme in the 7; direction and a Gauss-Radau-
Jacobi scheme in the 72 direction is shown in figure 4.1.

Tetrahedral Region

To integrate over 73 = {—1 < &1,&,83; & + & + & < —1} we use the
collapsed Cartesian coordinate system for the tetrahedron defined as

2(1+&1) 1 2(1+§2)71
(=& —¢&) 7 (1—£3) ’

Using this system the integration becomes

1 1 1
/T ul6n,6,6) dérdéadsy = [ 1 [ 1 [ )7 dyiyads

where the Jacobian, J, is

_ 06,6,8) _ <1n2> <1773>2
6(771)772’773) 2 2

As in the triangular integration we can include the Jacobian in the quadrature
weights by using the Gauss-Jacobi integration rules with (« = 0,5 = 0) in the

m = N2 = = &3.
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Figure 4.1 Quadrature points in the standard triangular 72 and tetrahedral 72 space
with @1 = Q2 = Q3 = 7. In the “n1” direction a Gauss-Lobatto-Legendre distribution
has been used and in the “ny” and “ns” directions a Gauss-Radau-Jacobi distribution
was used.

“

17 direction (i.e., Gauss-Legendre quadrature), (« = 1,8 = 0) in the “ny”
direction and (o = 2,8 = 0) in the "n3” direction. The integration rule over 73
then becomes:

1 1 1
/1/1/1u<m,n2,n3><1;2@> (1m)?
2,0 0,0 ~1,0 ~2,0
w

_ 0,0 . 1,0
= u(ny; yT25 5 M3k Jw; w; Wy,

where Lo
; 2,0
.10 Wy .20 Wy
wy = 5 KT Ty

and @1, @2, Q3 are the number of quadrature points in the 7,72, and 13 direc-
tions, respectively.

Once again we can choose any type of point distribution in the quadrature
rule (that is, Gauss, Gauss-Radau or Gauss-Lobatto). There are no explicit re-
strictions as to what type we use. The Gauss-Lobatto can be convenient as it
has zeros at the ends of the integration domain, thus allowing greater ease in
imposing the boundary conditions. Its use does mean, however, that we have
multiple quadrature points at the vertices (&5 = —1,& = —1,& = 1) and
(&1 = —1,& = 1,&5 = —1) as well as along the edge between these vertices.
As in the two-dimensional case, this is undesirable because of the redundancy
of quadrature points and the difficulty of evaluating the derivatives at these
points. The use of Gauss-Radau quadrature, which includes a zero at —1 in the
“ne” and “ns” directions circumvents this problem. The use of Gauss-Lobatto-
Legendre quadrature in the “n;” directions means that, as shown in figure 4.1,
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there are quadrature points along all of the boundaries of 73 except at the ver-
tices (&1 = —1,& = —1,& = 1) and (& = —1,& = 1,& = —1) and the edge
between them.

Prismatic and Pyramidic Regions

To complete the integration section we summarise the quadrature rules in the
prismatic and pyramidic regions as shown in figure 3.9. For both these regions
it is preferable to use Lobatto-type quadrature in the first two ordinates and
Radau type in the third ordinate. This generates as many quadrature points as
possible on the boundary of the region while avoiding any complications with
differentiation in the region.

For the prismatic region we use the local coordinate system

__20+8)

- (1_53) 9 525 53'

3
=

Integration within this region can be approximated as

/_11 /_11 /_11u(ﬁ17§27§3) (1_253) i, déadés

Q1—1Q2—-1Qs—1
0,0 0,010 0,0
=3 > > e aumy &) 1)

i=0 j=0 k=0

where

For the pyramidic region the local coordinate system is

__201+&) 2(1 + &)
=75 L =25 — L n3 = &3,
P(1-¢) (1-¢&)
and integration within this region can be approximated as
/ / / w(Ty, m2,ms) (A5 ) dmy dnzdns
Q1-1Q2—-1Q3—1
wo owo 0w2 ou(nh ’ngjo, ngo)

=0 j=0 k=0

where
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4.1.2 Differentiation in the Standard Region 2

In formulating a differential problem we typically require the derivative in terms
of the general Cartesian coordinates such as du/0x. We note, however, that the
use of a mapping from an elemental region « € 2, to the standard region & € Q4
allows us to evaluate the derivative using the chain rule of the form

Qu O | Oude | Dudt
61‘1 o 661 61‘1 652 6.1‘1 663 81‘1'

In section 4.1.5 we will introduce the mapping which will allow us to determine
the geometric factors (g—i, g—i, ...) to evaluate the full derivatives in terms of
Cartesian coordinates.

In this section we first discuss how to differentiate a polynomial function in
the local region Q; to evaluate derivatives of the form g—gul, g—g‘z, .... As for the one-
dimensional case (see section 2.4.2) we shall restrict ourselves to differentiation
in physical space, which means that the polynomial function is represented by
Lagrange polynomials through a set of discrete points which are typically the
quadrature points.

There is no need to distinguish between the modal or nodal expansions dis-
cussed in chapter 3 since a modal expansion can always be represented as a

Lagrange polynomial of equivalent order, that is,

u®(§) =Y agp(§) =Y uphy(€),

p=0

where hy(§) is the Lagrange polynomial which passes through a set of (P + 1)
points. Due to the collocation property of the Lagrangian representation [that
is, hi(€;) = d;;] the coefficients u, are the values of the approximation at the
nodal point, for example in one-dimension

Up = u5(§p).

This collocation property also implies that the derivative of u®(¢) at the nodal
points, &y, can also be described in terms of an expansion in Lagrange polyno-
mials, that is,

ou’ " on " ,
e © = pZ:Oupa—g(@ = pZ:Ouphp@)
where i
! ahl]
uh = ug =L(€)| .

This is very significant when calculating non-linear terms such as the advection
operator in the Navier-Stokes equation. For example, to determine the value of
the non-linear product



Ch. 4 Multi-dimensional Formulation 141

at a point &; we have:

P P oh
(&) B¢ (éz) = (Z)Z_Ouphp(&)> <Zuqa—€(§i)>

= (Z“php(gi)> (Zu;hq(gi)> .

Since hp(fz) = 5pi and h/q(gz) = 5qi then
6

(51) a€

Finally, we can represent our nonlinear product in terms of an expansion of
Lagrange polynomials as

S 3u5 L
u(€) 5 (€)= D upu iy (€)
p=0

We note however that if u°(¢) is a polynomial of order P then the non-linear
product u® (5)88—12(;(5) is a polynomial of order (2P — 1) and so it cannot be ex-
actly represented by the Lagrange polynomial expansion of order P. At the nodal
points the coefficient u,u;, will be identical to the value of u (§p) (§p) Nev-
ertheless, projecting the non-linear terms to a lower polynomial order in this
fashion can lead to aliasing errors as discussed in section 2.4.1.2.

Although this example is in one-dimension, the same properties apply in mul-
tiple dimensions provided the expansion can be represented by a tensor product
of Lagrange polynomials. Using the collapsed Cartesian coordinates systems de-
scribed in section 3.2.1 it is possible to represent any polynomial expansion as a
tensor product of one-dimensional Lagrange polynomials.

(gz) = Uzul

4.1.2.1 Two Dimensions Differentiation in the Standard Regions, st

Quadrilateral Region

To differentiate an expansion within the standard quadrilateral region Q2 of the

form:
P P

u’ (&1, &) = Zzupq¢pq £1,82),

p=0¢=0

we first represent the function in terms of Lagrange polynomials so

Q1—-1Q2-1

u®(&1,&2) = Z Z Upg Pp(§1)hg(E2),

p=0 ¢q=0

Implementation
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where
Upg = u6(§1pa§2q)v Q1> P, Q2> P

and &,,&, are typically the zeros of an appropriate Gaussian quadrature. The
operation of evaluating u,, from 1,, is a backwards transformation which we
discuss further in section 4.1.5. The partial derivative with respect to &; is there-

fore:
P P

€1a§2 ZZ“W d§ hq(&2). (4.3)

p=0 ¢g=0

A procedure for evaluating dh,(§)/d¢ at the Gaussian quadrature points is il-
lustrated in section 2.4.2 and appendix C. From equation (4.3) we can see that
to evaluate the partial derivative at an arbitrary point in (£1,&2) we need to
perform an O(P?) summation over p, q. If we evaluate the derivative at a nodal
point (&14,&2;) of the Lagrange polynomial the operation count is only O(P)
since hgy(§2;) = d4;, that is,

P P dhy(&1)
€ 5117523 ZZ{UPQ

p=0¢=0

§1i

14 } Z um dgl

For a Galerkin formulation we normally only require the derivatives at the nodal
points of the Gaussian quadrature since we typically have to evaluate inner
products of the form (V¢, V). The total cost of evaluating the derivative at
O(P?) quadrature points will therefore be O(P?3). The partial derivative with
respect to & can be evaluated in a similar fashion to arrive at:

66 Z“” Ty gzj'

Triangular Region

For the triangular region, 72, we can also represent any polynomial expansion
in terms of the Lagrange polynomial using the collapsed coordinates 71, n2:

Py, P

1 2
€1a€2 Z Uipg Gpq(n1,m2) Zzupq hq(n2),
p=0 ¢q=0
where
2(1+ &)
Upg = U’ (M1p, 72q), m=Te) 1, N2 = &2,

and 71y, N2 refers to the nodal points of the Lagrange polynomial. The sum-
mation over the indices p, ¢ for the modified triangular expansion is dependent
upon P;, P, but does not have a close packed form and so it cannot be summed
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consecutively. However, if @1 > P; and Q2 > P, then the polynomial space of
the basis ¢pq(171,72) is a subset of the space spanned by the Lagrange polynomi-
als hy(m1)hq(n2). The partial derivative with respect to Cartesian system &; and
& may be determined by applying the chain rule:

0 > o
061 (1 —m2) Om

- . (4.4)
9 GJAtm) & . 9
082 (1—=m2)0m  On2

Similarly, to differentiate in the quadrilateral region, the value of the partial
derivative with respect to 71 and 72 at the nodal points is given by

8u5
877 7711; 772] Z U’PJ

(4.5a)

M1

au5
877 7711; 772] Z uzq (45b)

dﬁ? n2j

Finally, substituting equations (4.5a) and (4.5b) into (4.4) we obtain the partial
derivatives of the function u with respect to the Cartesian coordinates (7, &2)
(see section 2.4.2 and appendix C for the formula to determine dhy(n)/dn).

Before considering the three-dimensional cases we note that determining the
derivative at (n2 = 1) presents a problem as the coefficients of the 9/9n; term
in equation (4.4) have a numerator which tends to zero as 72 — 0. Although
the derivative is well defined at this point, from a computational viewpoint spe-
cial treatment is necessary. This issue may, however, be circumvented by using
a Radau-type Gaussian quadrature in the 72 direction. An analytic form of the
derivative at (§; = —1,& = 1) may be constructed from the modal representa-
tion of the expansion, for example, the partial derivative with respect to &1 may
be written:

Py,Ps
du R T,
o, 1o = 2 B gy )

This summation still appears to be singular at (—1, 1) but we note that all of the
modes ¢,q, except one, contain the factor (1 — 72) which cancels the 1/(1 — 72)
term. The only mode which does not contain this factor corresponds to the top
vertex mode which is independent of 77; and therefore is necessarily zero when
we take the partial derivative with respect to n1. Furthermore, this summation
need not be evaluated over all O(P?/2) modes as many modes contain a factor
of (1 —n2)* where k > 1 and therefore, even when differentiated, will be zero at

7]2:1.



144 Spectral/hp Element Methods for CFD Ch. 4

4.1.2.2  Three-Dimensional Differentiation in the Standard Regions, (g

The three-dimensional derivatives are analogous to the two-dimensional case
save that the function is now described in terms of a tensor product of three
one-dimensional Lagrange polynomials, that is,

u® (1,62, 63) ZZZU’IHZT hq(&2)he (3)

and so the partial derivative with respect to &; is:

P P Py

5 51752753 Zzzupqrah 51 hq(§2)hr (€3),

which when evaluated at the nodal points of the Lagrange polynomials becomes:

ou’ > ah 5

a—(§1i,§2j,€3k Zumk ! : (4.34a)
3 14

Similarly, the other two partial derivatives at nodal points are given by

du’ E Ohy(&)

aF (2] j 5 % 4.34b

852 (51 €2] €3k Z Uigk —(f~ 852 o, ( )

O (1,01, Z ah (&) (4.34c)

a¢e \Sliyr&275 3k Uijr — (a7 . .

083 9&s &3k

Each of these expressions takes an O(P) operation to evaluate a single deriva-
tive, which implies that the cost to evaluate a derivative at O(P3) quadrature
points within the region is O(P*). The formula for evaluating dh,(£)/d¢ can be
found in section 2.4.2 and appendix C.

Equations (4.34a), (4.34b), and (4.34c) clearly define the partial derivatives
for the hexahedral region. If, however, we replace the Cartesian coordinates by
any of the local collapsed Cartesian coordinates we can interpret these equations
as representing the partial derivatives with respect to the local coordinates. Just
as in the two-dimensional case for the triangular region, we can use the chain rule
to obtain the local partial derivatives with respect to the Cartesian coordinates.
For hybrid three-dimensional domains the partial derivatives are evaluated using
the expressions:

Tetrahedral Region:

Implementation
note: Numerical diff-
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Three dimensional re-
gions.
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0 4 0
23! (1 —m2)(1 —n3) Om
o || _204m) o 2 o
062 (I=m2)(1 —m3)Om (1 —m3) Oz ’
9 20+m) 0  (I4+m) 0 0
9¢3 (L=m)(I=m3)0m  (L—m3)On2  Ins
where
1+ &) (1+&)
oS =2 —1, -
(s Eop—y 2= ) =G
Pyramidic Region:
9 > 0
061 (1 —mn3) Om
o |_ |2 9
o | | (1 —m3)0ne ’
o |ormo  a+mo o
083 (I—m3)0mr  (1—m3)0n2  Ons
where
. 1+&) (1+&)
=2 —1, =2 —1, =&,
m (1 — 53) T2 (1 — 53) n3 53
Prismatic Region:
0 > 0
& (1 —mns) oy
9 | _ 9
o6 | 0&3 ’
o | lasmo o
0&3 (1—m3)0n,  Ons
where 116
_ +8&) .
77172(1_53) 13 773*53'

For the tetrahedral, prismatic, and pyramidic regions there is a potential

problem when 72 = 1 or n3 = 1 due to the factors WM and m As
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before, evaluation of the derivative at this point can be avoided by the use of
Gauss-Radau quadrature in both the “ne” and “n3” directions for the tetrahedral
region, and in the “n3” direction for the prismatic and pyramidic regions. The
derivatives are well defined in these regions although evaluation at no = 1 or n3 =
1 does require analytic differentiation of the expansion modes or interpolation
from the derivatives evaluated at the Gauss-Radau distribution of points.

4.1.3 Operations within General Shaped Elements

We have seen how to integrate and differentiate within the standard region 4,
however, in practice we need to perform these operations in the elemental regions,
Q°, which may be of a generalised shape and orientation as illustrated in figure
4.2. To consider these cases we need to define a one-to-one mapping between the
Cartesian coordinates (z1, z2) and the local Cartesian coordinates (€1, &2) which
are denoted by

z1 = X7(61,€2), z2 = X5(61,82)

in two-dimensions, and similarly

Tl :X§(£15527§3)7 1'2:)(5(61752753)5 €3 :X§(£1552553)

in three-dimensions.

In section 4.1.3.1 we start by discussing how to define a mappings x¢, from
the elemental region to the standard region for straight sided elements which
simply requires information about the vertices of an element. Elements can also
be curvilinear although in this case some information about how the edges (or
faces in three—dimensions) are curved is also required. When this is known, we
can define a more complex elemental mapping as discussed in section 4.1.3.2.
Regardless of the complexity of the mapping, we still need to know how to inte-
grate and differentiate in a general domain. This is discussed in sections 4.1.3.3
and 4.1.3.4. Finally, in section 4.1.4 we discuss how to evaluate the Jacobian
of the mapping between a curved boundary and a standard region as typically
required in a surface integral term.

4.1.3.1 Elemental Mappings for General Straight-Sided Elements

For elemental shapes with straight sides a simple mapping may be constructed
using the linear vertex modes of a modified hierarchical/modal expansion. For
example, to map a triangular region [as in figure 4.2(a)] assuming that the global
coordinates of the triangle {(z{', z4"), (zP, 28), (2, 25)} are known (with C the
collapsed vertex), we can use

1—m) (L —n2)
i = Xi(m,n2) = af ( B ( B
(I4+m)A—n2) o @+mn) .

5 5 x; g v = 1,2. (4.35)
Equation (4.35) is expressed in terms of collapsed Cartesian coordinates but
can easily be expressed in terms of the Cartesian coordinates by recalling that

(m =2 Eig; — 1,m2 = &) which on substitution into (4.35) gives:

B
+xi
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b)

Figure 4.2 To construct a C° expansion from multiple elements of specified shapes
(for example, triangles or rectangles), each elemental region 2° is mapped to a standard
region €)s; in which all local operations are evaluated.

—&5 — 1
$i:X(E1,§2):3’J? ( 622 61)_’_1‘13 ( 251)4_1‘1 2 =12 (436)
A similar approach leads to the bilinear mapping for an arbitrary shaped straight-
sided quadrilateral where only the vertices need to be prescribed. For the straight-
sided quadrilateral with vertices labelled as shown in figure 4.2(b) the mapping
is:

c (1+¢&)

A01=8)10-E&) B(1+§1) (1-&)

z; = x1(1,&) = 7 5 5 T ) 5

When developing a mapping it is important to ensure that the Jacobian of
the mapping to the standard region is non-zero and of the same sign. To ensure
this condition is satisfied when using the mappings given above, we require all
elemental regions to have internal corners with angles that are less than 180° and
so are convex. It is not, in fact, possible to generate a straight-sided triangular or
tetrahedral region which does not satisfy this condition, but, as shown in figure
4.3, it is certainly possible within a quadrilateral or other three-dimensional
regions.

4.1.3.2 Elemental Mappings for General Curvilinear Elements

For a general straight-sided elemental domain we have seen in section 4.1.3.1
that a one-to-one linear mapping can be constructed onto the standard region
using the vertex modes of the hierarchical modal expansion. For example, a
quadrilateral domain of the form shown in figure 4.2(b) the mapping can be
defined by equation (4.37).

We note that this simply involves the vertex modes of the modified hierarchi-
cal expansion basis within a quadrilateral domain (see section 3.1.1). We could,
therefore, have written the expansion as
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S oy

Figure 4.3 (a) Illustration of permissible quadrilateral region with all interior angles
less than 180°. (b) Illustration of non-permissible quadrilateral region, which has a
re-entrant corner and so has interior angles which are greater than 180°.

p=P1 q=P>

wi=Xi(€,6) = D D Ehbpe(é1,62) (4.38)

p=0 ¢=0

where ¢pq = V5 (1)1 (€2) and oﬁéq = 0 except for the vertex modes which have
a value of

i _ A s _.B s _.C i _ .D
Tog =T;  Tpo=7%; Tpop, =%  Top, = Ty -

The construction of a mapping based upon the expansion modes in this form
can be extended to include curved sided regions using an isoparametric represen-
tation. In this technique the geometry is represented with an expansion of the
same form and polynomial order as the unknown variables.

To describe a straight-sided region we needed only to know the values of the
vertex locations. To describe a curved region, however, requires more informa-
tion. As illustrated in figure 4.4, we typically expect to have a definition of a
mapping of the shape of each edge in terms of the local coordinates which we
denote as fA(&1), fP(&), f€(€1) and fP(&). The process of defining the map-
ping functions can be considered as part of the mesh generation process, the
discussion of which is in section 4.3.3.

Knowing the definition of the edges (or faces in three-dimensions) a mapping
for a curvilinear domains can be determined using the isoparametric form of
equation (4.38) to include more non-zero expansion coefficients than simply the
vertex contributions. In two-dimensions we wish to use the coefficient along each
edge of the element, and in three-dimensions we can use the face coefficients as
well. Along each edge we therefore need to approximate the shape mapping f;(&)
if it is not already represented by a polynomial of appropriate order. We might
therefore consider the following approximations for f/(&;)

FAE) =Y A& (&) (4.392)
p=0

~ N " dgp(&). (4.39b)

p=0
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X = (&)
*

x = £2(c,) x = f(&)

X = fAz,)

AEL» %,Ez)
3

Figure 4.4 A general curved element can be described in terms of a series of para-
metric functions f*(&1), f2(€2), f€(&1), and fP(€2). Representing these functions as a
discrete expansion we can construct an iso-parametric mapping x;(&1,&2) relating the
standard region (£1,&2) to the deformed region (z1,z2).

One important feature of the approximation and consequently the mapping x;
is that the vertices of each element coincide so that elements remain continuous.
One way to ensure this is to use a collocation projection where the collocation
points include the end-points £; + 1. The Lagrange representation of equation
(4.39a) is therefore a consistent way of approximating f/(¢). Using the Gauss-
Lobatto-Legendre quadrature points for our collocation projection is attractive
due to their small Lebesgue constant associated with this interpolation as dis-
cussed in section 3.3.1. Similarly, within a triangular face of a three-dimensional
element the Fekete or electrostatic points are a favourable choice for collocation
points. By making collocation projections at a series of nodal points we have
then represented the function f# as a polynomial which can be equivalently ex-
pressed in terms of a hierarchical expansion, 1, () to obtain the coefficients ﬁ:;o
in equation (4.39b). This final transformation can be performed either by a col-
location or Galerkin projection if the polynomials span the same space. If more
collocation points are used then a modified Galerkin projection as discussed in
section 4.3.1 can be applied. Having determined the coordinate expansion coeffi-
cients, 55;0, we can then evaluate equation (4.38) to determine the isoparametric
mapping from the standard region to the curvi-linear region.

We note that the form of the boundary-interior decomposition of the modal
quadrilateral and hexahedral expansion is discretely equivalent to using a lin-
ear blending function as originally proposed by Gordon and Hall [194]. For the
quadrilateral region shown in figure 4.4 the linear blending function is given by
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X1, 62) = fA(E) E582) 4 O () L&)

+fD(§2) (1*261) + fB(fz) (1251)

(4.40)
U o) pa ) - L (o) paqy)
_u—_;n%fc,*(_l) _ %%J‘C(U,
where the vertex points are continuous [for example, f4(—1) = fP(-1)]. If

we replace the analytic curves f4(&1), fB(&), f€(€1) and fP (&) in expression
(4.40) with an approximate expansion of the type given in equation (4.39a) and
rearrange, we can obtain an expansion of the form given by equation (4.38). The
blending function (4.40) with approximations of the form (4.39a) to the mapped
edges has traditionally been applied in spectral element methods. However, we
note the aforementioned similarity with the modal expansion approach.

As a final point we note that for curved triangular or tetrahedral elements,
the linear blending function expressed in terms of the local collapsed coordinates
11,12, M3 should not be used as this can generate a non-smooth Jacobian (at the
singular vertices) and cause a loss in exponential convergence of smooth functions
in curved domains. The use of the isoparametric representation of the coordinates
(equation 4.38) generates a mapping with a sufficiently smooth Jacobian.

4.1.3.3 Integration within a General Shaped Elemental Region

We denote an arbitrary triangular or quadrilateral region by 2¢ which is a func-
tion of the global Cartesian coordinate system (x1,z2) in two-dimensions. To
integrate over Q¢ we transform this region into the standard region Qg defined
in terms of (&1,&2) and we have

/4u(x1,z2) dx1 dxo :/Q u(é1,&2)|J2p| dé1 déa,

where Jop is the two-dimensional Jacobian due to the transformation, defined

as:
81‘1 61‘1

g2 0Tz §1 08 08 06

06 0&
As we have assumed that we know the form of the mapping [i.e., x1 = x1 (£1,&2),
9 = x2(&1,&)] we can evaluate all the partial derivatives required to determine
the Jacobian as discussed in section 4.1.2. If the elemental region is straight-
sided then we have seen that a mapping from (x1,z2) — (£1,&2) is given by
equations (4.36) and (4.37). The simple form of these mappings means that the
partial derivatives, and therefore the Jacobian, are constant for quadrilateral
regions with similar shape and orientation to the standard region, as well as
for all triangular regions. For deformed regions the Jacobian may be evaluated

(4.41)
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and stored at the quadrature points. This essentially represents the Jacobian as
a polynomial function and can therefore increase the polynomial order of the
integrand.

We note that integration over the triangular region now involves two transfor-
mations, that is, (x1,x2) — (&1,&) and (&1,&2) — (1, 72). However, the second
transformation (£1,£2) — (n1,72) may be absorbed entirely into the quadrature
weights as discussed in section 4.1.1. This is preferable since the polynomial or-
der, which may be exactly integrated, is higher. Having evaluated the Jacobian
at the quadrature points, we multiply the integrand by the Jacobian and evaluate
the integral in the same manner as discussed in section 4.1.1.

Integration over a three-dimensional region 2¢ is performed in an analogous
fashion where the three-dimensional Jacobian now has the form:

Oy 911 Oz | Om;1 (%% _ %%)
661 662 663 651 662 663 653 662
(91'2 81'2 81'2 61‘1 (61‘2 6.1‘3 61‘2 6303)
Jap = | £z 2Pz 02 041 (02 O3 Ofs O3 4.42
W= 06 06 06 | 06 \ 06 96 086 06 (4-42)
Ozs 0T3 Ova | | Omy (Owp Oy O O
861 852 853 653 661 652 662 651 ’

4.1.3.4 Differentiation within a General Shaped Elemental Region

To differentiate a function within the arbitrary region Q¢ as illustrated in figure
4.2 we once again apply the chain rule which, for the 2D case, gives:

07 a0 L a0
6.1‘1 8331 661 6.1‘1 662
V= = (4.43)
9 06 9 08 0
(91’2 (91’2 861 81'2 852

In section 4.1.1 we illustrated differentiation with respect to £&; and & but we
now also need to evaluate partial derivatives of the form 9¢; /0x;. For the linear
mapping case given by equations (4.36) and (4.37) it is possible to obtain an
analytic formula, but in general we need a technique to handle a curvilinear
elemental region. To do this, we express the partial derivatives such as 9&1/0z1
in terms of partial derivatives with respect to £1, &2, which we already know how
to evaluate. For a general function dependent on two variables, (&1, £2) we know
from the chain rule that the total change in u(&1,&2) is

ou

du(&1,62) 9%,

€1+ =—dés. (4.44)

=2a
231

If we replace u(§1,82) by #1 = x1(£1,&2) and z2 = x2(&1,€2) we obtain the
matrix system

Formulation
note: Differentiation
within a general region
in terms of local Carte-
sian coordinates: Geo-

metric factors.
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O, Oy
dxy & 0& dé,
dzs Oz Oy | | d&
061 0&
which can be inverted to obtain
61‘2 61‘1

d&y 1 & 0&s dxy
S (4.45)
de| 7| 0wz 9my | | day
& 9&
where J is the Jacobian defined by equation (4.41). However, as the mapping is
assumed to be one-to-one and have an inverse we assume that &; = (x1) (21, 22)
and & = (x2) (z1,22) and so we can apply the chain rule directly to &;, & to
obtain:
LIS IST
dgl 1 oxy Ora dry

dgs _0& 0% | [du
61‘1 61‘2
Finally, equating (4.45) and (4.46) we see that:
061 _ L0z 06 _ _10m 08 _ 10z 06 _ L0n
61‘1 o J 6627 61‘2 - J 652, 61‘1 o J 6617 61‘2 o J 661

We can now evaluate the two-dimensional gradient operator in equation (4.43) as
all the partial derivatives can be expressed in terms of differentials with respect
to &1, & which may be evaluated using the Lagrange polynomial representation
explained in section 4.1.2.

For the three-dimensional gradient operator we assume that the coordinates
T1,%2,x3 are also known in terms of mappings dependent upon &7,&2,&3. So
applying the chain rule we obtain

(0] [9a 0 [ 0% 0 | 0% O]
81'1 81'1 851 81'1 852 81'1 853
0 96 0 08 0 08 0
| 2| %L 9 % 9 08 9 4.4
v 61‘2 61‘2 651 + 61‘2 652 * 61‘2 653 ( 7)
9 06 0 0% 0 | 08 O
L Oz3 | L 0x3 0&  Ox3 08y Oxz 0€3 |

Following a similar analysis to that used for the two-dimensional case we express
the partial derivatives with respect to x1, 2, and 3 in terms of derivatives with
respect to &1, &2 and &3 using the relations:
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06 063 0&3 06

% o L (61‘2 61‘3 61‘2 61‘3) & o _L (61‘1 61‘3 61‘1 81‘3)
dr1  J3p R Jsp \ 062 063 083 062 )

& 1 (63:1 61‘2 61‘1 61‘2)

Ors  Jap \0& 0&  0&3 0%
%__L(%%_%%) %_L(%%_%%)
O0x1 Jsp \0& 08 0& 061 )" Oxe  Jzp \0& 0& 03 9& )

% _ 1 (%% - %%)

Ors  Jsp \0& 0&  0& 061 )
%L(%%%%) %L(%%%%)
Ox1  Jap \0& 0% 083 0& )" Oxo Jsp \0& 0% 0& 061 )

Oors  Jsp

0&1 0&  0& 0&

where Jsp is as defined in equation (4.42).

% 1 <8x1 81'2 81‘1 81'2>

4.1.4 Discrete Evaluation of the Surface Jacobian

As a final local operation which combines the concepts of elemental mapping,
integration and differentiation we consider the evaluation of the surface Jacobian.
Surface integrals of the form

Nel
< v, gn >= / vgndS = Z/ vegpndS© (4.48)
QN o1 Joax [ one

typically arise in the Galerkin discretisation of the Laplacian operators due to
the application of the divergence theorem. Since these types of integrals normally
appear as right-hand-side contributions in our matrix problems they can be
evaluated as a series of integrals over different elemental boundaries. Therefore,
in a similar way to integration in the elemental region our strategy for evaluating
(4.48) is to transform each elemental contribution to a standard interval and
perform the integration using Gaussian quadrature. This transformation to a
standard region necessarily introduces a Jacobian which we shall refer to as the
surface Jacobian.

4.1.4.1 Surface Jacobian of a Two-Dimensional Region

In two-dimensions the surface integral is simply a line integral of the form

b
[ frais (1.49)

where ds = /(dx1)? + (dz2)? is the differential length. The region is naturally
broken into elemental regions 92¢ (s within which we want to evaluate each
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segment of the integral (4.49). We know that the global coordinates x1, z2 within
each element are related to the local coordinates &1, &2 in terms of the mapping,
that is,

1 = x1(&,&2), z2 = x2(&1, &2)-

We can therefore relate the differential change in 1 and x5 in terms of a differ-
ential change in & and & using the chain rule:

61‘1 61‘1
dry = =——dé; + =——d&s,
o 0&1 & 3] 2
61‘2 61‘2
dre = —2d&) + —=2dé,,
2 0&1 & ) 2

where the partial derivatives may be evaluated as shown in section 4.1.2. Along
the boundary of any element the edge is completely parameterised by either &;
or & as the other local coordinate is a constant having a value of 1 or —1. For
example, in figure 4.22 the edge touching the domain boundary in element ‘e’ is
parameterised by &; since & = —1. For this case we can relate the differential
length ds in terms of a differential change d¢; as

2 2
0 0
ds = \/(dw1 )2 + (dus)? = | | == (de)? + | 2 (d&))2,
aé_l Ea=—1 aé_l Eo=—1
where the partial derivatives g—g, g—zf are evaluated at €& = —1. The contribution

of element “e” to the integral in equation (4.49) can now be written as

/ammsf(l‘ham)ds = /_11 f(&a&)\/(g—g)z + (2—2)2 déq,

which can be evaluated using standard Gaussian quadrature. The whole surface
is then generated as a summation of elemental contributions although in general
the integrand contains the test function which only has non-zero support in, at
most, two-elements.

4.1.4.2 Surface Jacobian of a Three-Dimensional Region

In three-dimensions we want to evaluate a two-dimensional surface integral of
the form
f(l‘l,SCQ,ZL'g)dS. (450)
o0
Just as a one-dimensional surface can be completely parameterised in terms of a
single parameter, a two-dimensional surface can be described by a doubly infinite
set of parametric curves.
As indicated in figure 4.5 we have already parameterised the surface in terms
of two of the local Cartesian coordinates ({1, &2, £3) depending on which face we
are considering. If we consider the face {5 = —1, as shown in figure 4.5, then
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dl,

Figure 4.5 The surface of the solution domain 02 is represented as a tessellation of
rectangular (or triangular) partitions within which we have a double parameterisation
(that is, &1,&2). We can use this parameterisation to relate the differential surface area
dS to the differential change in &1 and &2 via the surface tangent vectors dl|¢, and dl|e, .

we know that our surface can be completely described by the two parameters &1
and &, that is,

z1=x1(&1,&,-1), x2=x2(&,8&,—1), x3=x3(&,8&,—1).

To relate the differential surface area d.S in terms of the parametric coordinates
&1, &, we note that the change in surface position dx = [dz1, dzedrs]” due to a
change in the parametric coordinates is given by

oz oz
de = L2 ae, + 22 e,
x 96, &1 95, o

where g—g’, g—g are the surface tangent vectors along lines of constant &s,¢&,

respectively. Therefore, along a line of constant &; the change in differential
length dl|¢, due to a differential change in &; is

o
961

ox 81'2

5 | %

O3
L 961 |

Similarly, along a line of constant ¢; the change in differential length dl|¢, for a
differential change in & is
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o
982

oz 0xo

dle, = 9, N dée = %,

dés.
O3

L 982 |

We note that dlg, and dl|¢, only involve derivatives of the coordinates with
respect to the local coordinates (£1,&2) and so they can be evaluated as explained
in section 4.1.2. In general dl¢, and dl|¢, are not orthogonal and as shown in figure
4.5, the differential surface area dS is given by a parallelogram

ds = |dle,||dle, | sin 6,

where 6 is the angle between the vectors dlg, dl¢,. The magnitudes |dle,| and

|dle, | are also known as the Lame parameters.
This expression may also be written as a cross-product in the form:

or Ox

dS = |dle, x dl¢,| = |7 X —

| 52 §1| ‘ 651 652

Finally, we are in a position to evaluate the surface integral given in equation

(4.50) over the elemental face as

d§1d&o.

/meﬂmf(xh%aws)dS:/_ll /_llf(&,sz,—l) |22 22| dgdes,

which can be evaluated using Gaussian quadrature.

Clearly, for different elemental faces we need to change the parametric co-
ordinates. The shape of the surface region is not dependent on the derivation
and therefore the same argument can be applied to a triangular surface although
the integral is usually evaluated using the local collapsed Cartesian coordinates
11, 7M2. This type of construction more commonly arises in structural mechanics
for thin shell theory and further discussion may be found in Akin [7].

4.1.5 Elemental Projections and Transformations

As discussed in chapter 3 there are a variety of choices of expansion bases, ¢, (€),
which correspond to different shaped regions as well as different constructions
such as modal and nodal or tensorial and non-tensorial expansions. In general,
we assume the notation

Ny, —1 Ny, —1
“6(17) = Z U m(§) = Z Upgr Ppar (), (z) € Q°, (4.51)
m=0 m(pqr)=0

where @ = |21, x2, 23], € = [£1, &2, &3] and m(pgr) represents the connection be-
tween the tensorial indices p, ¢, 7 and an global index m which will be discussed
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in more detail below. We also recall that the local, £, and global, @, coordinates
are related through the mappings

=08 (@, me,m3); fo=(XS) (21, 22,23); &= (x5) ' (1,22, 23).

By analogy to the Fourier transform, we will refer to u°(x) as representing a
physical space variable and Uy, Upqr as being in transformed space.

In this section we discuss how to obtain the transformed coefficients g,
from the physical representation, u’(a), using collocation and Galerkin projec-
tions and thereby define the forward transformation. Although we shall later
discuss it in more detail we note that equation (4.51) represents the backward
transformation from the coefficient to the physical values.

4.1.5.1 Elemental Matrix and Vector Notation

The formulation in multiple dimensions and using different types of expansion
bases necessitates the introduction of a large number of super- and subscript
notations. To help clarify the operations to be discussed in this section as well as
those in section 4.2 we, therefore, introduce a matrix and vector notation to rep-
resent operations such as integration and differentiation. This notation is helpful
in illustrating the construction of discrete operations such as the transformation
from physical to transformed space. It is also useful in providing an insight into
the fundamental operations when implementing a numerical scheme. We note,
however, that explicit construction of these matrices is not always necessary or
sometimes even desirable in practice. Many of the matrices are diagonal or very
sparse and therefore explicit construction is unnecessarily costly from the com-
putational point of view. Where the expansion bases is based upon a tensor or
generalised tensor product construction we can apply the sum-factorisation tech-
nique discussed in section 4.1.6. When using higher order polynomial expansions
(i.e., P > 6 ) this technique requires far less memory storage and a far lower
operation count than the equivalent operations using the full matrices. Never-
theless, as we shall highlight in our discussion, when using a non-tensorial basis
it may be necessary to explicitly construct and store some matrices.

Finally, we note that all definitions in this section refer to a single element.
In section 4.2 we will extend the notation to include multiple elements. To dis-
tinguish between the two uses we will introduce a superscript ’e’.

Vectors: u,u

Typically, we require the value of a function at a nodal set of points §,,, 0 <
m < N and so we define the vector u to denote the evaluation of u(LCccord) at
these points, i.e.

u[m] = u(§,,),

where we have dropped the § superscript for notational convenience.
When using a tensor based expansion we typically require the function to be
evaluated at the quadrature points. In this case we can take our set of nodes
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as the set of one-dimensional quadrature points, for example in the hexahedral
region we can say &,,(; j k) = (614, &25, E3x] where 4, j and k are the indices over
the one-dimensional quadrature nodes. If we have @1, @2, Q3 quadrature points
in each direction then the vector 4 becomes

u[m(ijk)] = u(&1i, €25, &3 ),

where

m(ijk) =i+j-Q1+k-Q1-Qa.
In the above, array m(ijk) is an integer value which runs consecutively from 0
to Ng = (Q1 - Q2 - Q3) as the indices i, j, k run through the ranges (0 < i <
Q1-1,0<<Q2—1,0<k<Q@s—1). By convention we let the &; coordinate
run fastest followed by the & and finally the &3 coordinate. Written explicitly
the vector w is

w = [u(&10, €20, &30)s -+ w(€10y 5 €205 E30), u(€10, €21, €30) - (1045 €20, E305)] -

The two-dimensional case is analogously defined with £ = 0. In the case of a
non-tensorial basis the index m simply lists the set of discrete nodal points §,,,.

To represent the expansion coefficient ., in vector form we adopt a similar
notation but with a circumflex, (that is, @) such that

afm] = dpy,.

The number of the expansion coefficients is clearly related to the number of
expansion modes which has previously been denoted as N,,. For a non-tensorial
nodal expansion m would also correspond to the expansion coefficient of the
Lagrange polynomial with unit value at &,,.

For tensor based expansions the storage convention for the vector & depends
on the local indices of the one-dimensional functions usually denoted as p, ¢, 7.
Therefore for the orthogonal tensorial expansions we can define the “packing
process” which relates m(p, ¢, 7) to p, ¢, r. For example, an orthogonal expansion
in the hexahedral region of polynomial order P;, P, P35, @ is defined as

(7 [m(pqr)] = ﬂquv

where
m(pgr) =r+q(Pa+ 1) + p(P + 1)(P3 + 1)

or equivalently
NI PN N N N . N N T
u = [Uooo, Uoo1 * * * UOOP3, U010 * * * UOL1 P35 * - U020, * * UPlPZPg]

We note that the skipping factors are (P + 1) as it requires (P + 1) modes to
represent a polynomial of order P. By convention we let the index r run fastest
followed by ¢ and finally p. Although this convection would appear to be the
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Figure 4.6 Ordering of the expansion coefficients for the modified expansion in a
triangular and quadrilateral region with P = P> = 4. In this ordering we label the
vertices first, followed by the edges, and finally the interior. For the interior modes the
q index is allowed to run fastest.

reverse of the nodal point definition, the ordering is necessary to take advan-
tage of the partial orthogonality of the generalised tensor product expansions as
illustrated in figure 3.21.

The orthogonal expansion within a triangular region, ¢,y = qﬁg(m)qﬁgq(ng),
of order P, P, defined in section 3.2.2 would have an index system defined by

p(2P, +1—1p)

m(pq) = q + 5

where the index range of p, g is
0<p,ggp<Pi; p+q< Py PL< Py

For the orthogonal, generalised tensor product expansions, it is possible to
define m(pgr) analytically since the indices are close packed. However, for the
modified generalised tensor product expansion bases defined in section 3.2.3 there
is not a close packed form for m(pgr) due to the way we have defined the ex-
pansion modes. This is also true for the serendipity and variable expansion in
quadrilateral and hexahedral regions. In general, we interpret the form of m(pgr)
as reordering the N,,, modes of an elemental expansion into a consecutive order.
A typical storage scheme might place the indices of the vertex modes first, fol-
lowed by the edge, face and finally the interior modes where we shall still allow
r to run fastest, followed by ¢ then p within each group of modes. An example
of this ordering for quadrilateral and triangular expansions of order P;, P, = 4
is shown in figure 4.6.

Weight and Basis Matrices: W, B

A matrix of dimension m + 1,7 + 1 is understood to be a rectangular array of
the form
Qoo a1 *** Gon
A= aip a1 -+ aOn.

Amo Am1 **° Amn
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To complement the vectors w and @ we introduce two matrices W and B.
W, the weight matrix, is a diagonal matrix containing the Gaussian quadrature
weights multiplied by the Jacobian at the quadrature points and is defined to be
consistent with w evaluated at the set of quadrature points. This matrix is not
defined for an arbitrary set of nodal points. If J;;, represents the discrete value
of the Jacobian J(&14,&2;, &3,) then W in three dimensions is defined as

Wm(ijk)][n(rst)] = Jijk wi w; Wk Omn

where d,,, is the Dirac delta and m(ijk), n(rst) are defined in a consistent fashion
to u so
m(ijk) =n(ijk) =i+j-Q1+k-Q1- Q2.

The quadrature weights are defined according to the elemental region so for a

: 0,0 0,0 0,0
hexahedral region w; = w;",w; = w;" ,w, = w, whereas for a tetrahedral

J
. ~1 ~2 .. . .
region w; = w?’o,wj = wj’o,w;€ = wk’o. The explicit form of the weight matrix

in a tetrahedral region is therefore

_wgvowéaowgaojijk 0 O O 0 T
0 0 0 0
W = 0 0 w%’?lﬁé’o by Jijr 0 0
0 0 0 . 0
0,0 1,0 20
I 0 0 0 0 wg, _1WgG,_ 105, —1Jijk |

The basis matrix, B, is a type of Vandemonde matrix as introduced in section
3.3.2. The matrix B is therefore defined as having columns which are a fixed
expansion modes ¢, (&) evaluated at all the nodal points &,,,, that is,

Blm][n] = ¢n(&,n)-

Using the previously defined indexing for the tensorial expansions we can
define the basis matrix for a tensor expansion, @, (pgr) = @per evaluated at the
quadrature points &, ;5 = (614, &25, E31] as

B[m(ijk)][n(pgr)] = ¢pgr(&1is §255 E3k)-

The matrix is formulated so that its columns [looping over m(ijk)] are ordered
in a consistent fashion to u and its rows [looping over n(pqr)] are ordered in a
consistent fashion to @, that is,

$000(£105€20,€30) - Doors(£10,€20,830) -+ Ppgr (1056205 E30)
B = ¢OOO(€1Q1.;£205530) ‘ ¢OOP3(§1Q.U£2O;£3O) : (bpqr(ngl.agQOag?)O)

¢000(§1Q1a.§2Q27§3Q3) - Poop, (§1Q1;§2Q2,§3Q3) * Opgr (§1Q17.§2Q27§3Q3)
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For the non-tensorial nodal basis in simplex regions discussed in section 3.3
there is not a close form expression to evaluate the multi-dimensional Lagrange
polynomial L,(€) at an arbitrary points, &,,. It is therefore not immediately
obvious how to construct the basis matrix B in this case. Following the formu-
lation of Warburton et al. [488] we recall from section 3.3.2 that the triangular
(or tetrahedral) Lagrange polynomial can be expressed in terms of another ba-
sis @pq(§) (such as the orthogonal tensorial expansion in a simplex) using the
transformation

Lo(§) bo(§)
: p=By" : (4.52)
Ly,,-1(§) éN,,-1()
where

BN[”/] [n(pq)] = ¢pq(€n/)

and &, (0 < n' < N,,) are the set of nodes which define the Lagrange polynomial
L, (€). Note that we have used B whereas we previously used V' in equation
(3.22) of section 3.3.2. We can now evaluate the Lagrange polynomial basis at
an arbitrary set of points by evaluating ¢pq(§) at the desired points. Therefore,

the matrix B[m|[n] = L,(&,,) of the non-tensorial triangular Lagrange basis
evaluated at the quadrature points in the triangle, Sm(ij) = [mi,m2;], can be
determined as

B" = B/ BY
or equivalently

B = BrB}/ (4.53)

where
Br[m(ij)][n(pa)] = ¢pq(&nij))-

Using this construction in the following section we will be able exactly to inte-
grate and differentiate the non-tensorial expansions in general shaped elemental
domains.

Differentiation matriz: Dy,

The final matrix we require to complete our set of discrete operators is a ma-
trix representing the action of differentiation. Recall that partial differentiation
with respect to the local coordinates £; defined in physical space can be written

as
Q1 Q2 Q3

0 (€
a—;(ﬁu,@j,g%) 33y %

r=0 s=0 t=0

hs (EQJ )ht (€3k) Ursty

€14

where h,.(€) is the one-deimesional Lagrange polynomial through the 1 quadra-
ture points and u,s = w(&1r, €25, &3¢). A similar definition follows for the other
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partial derivatives, (see section 4.1.2). We can, therefore, define a derivative ma-
trix D¢, which acts on u evaluated at the quadrature nodes such that D¢ u is

the derivative at the quadrature points ug, = a—g, that is,
ou
— =D
3 au,

where dh (61)

D, [m(igk)][m'(rst)] = =] ho(ga;)ha(Ean) (4.54)
14
and

The differentiation matrix can clearly be used to evaluate the derivative of
the expansion bases, ¢y, at the quadrature points, &,,(; jx), if applied to the
basis matrix B. Therefore to evaluate the derivative with respect to &; of the
basis ¢ (pgr) at the quadrature nodes &,,,(;x) = [§14, €25, §3x] we can write

¢,
96

For the non-tensorial nodal basis expansion ¢,, = L,, the derivative is evaluated
in an identical fashion with the basis matrix B evaluated using equation (4.53).

(§,,) = (De, B) [m][n]

The matrix D¢, is very sparse as can be appreciated from the fact that
hs(€25) = 6sj and he(€sk) = 0. This is particularly evident in the case of D,
because of the way we have chosen to order the quadrature points. Since the &
coordinate index runs fastest we find that Dy, is a block diagonal matrix made
from the one-dimensional derivative matrix, that is,

DY 0 0 o0
0 DY 0 0
DEl = 5
0 0 . 0
0 0 o0 DY
where h
U= P i< Q).
& g,

This illustrates the potential inefficiency of forming the matrix D¢, since the
matrix vector product Dy,,, is an O ((Q1 - Qg - Q3)2) operation. However, if we
perform the equivalent operation using the one-dimensional matrix D' along
all lines of constant &5, &3 it is an O ((Q1)2 - Qg - Q3) operation. This reduction
in cost is a direct consequence of the tensor construction of the basis and can
also be considered as a sum factorisation operation as discussed in section 4.1.6.

Diagonal Coefficient Matrices: A(c)
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We have seen previously that the derivative with respect to the global co-
ordinates x1, x2, and x3 can be obtained via the chain rule from the derivative
with respect to the local coordinates [see equation (4.47)]. The equivalent ma-
trix operation requires us to premultiply the derivative matrices by a diagonal
matrix containing factors such as %%a %%, %%, ... evaluated at the quadrature
points. To denote these diagonal coefficient matrices we introduce the notation
A (f(&,&2,&3)) to be a diagonal matrix whose diagonal components are the eval-

uation of the function f(&1,&2,&3) at the quadrature points, that is,

A(f (&1, €2,83))[m(igk)][n(rst)] = f(§1i §255 E3k)Omn (4.55)

where
m(ijk) = n(ijk) =i+ - Q1+ k- Q1 Q2.
Therefore, since we know that

Ou _ 08 Ou 0% Ou | 0% Ou
61‘1 o 61‘1 651 6.1‘1 662 61‘1 653

we can evaluate u,, = g—;‘l at the quadrature nodes using the notation

Uz, = [A(S_E)Dél +A(g_§521)D§2 + A(g_ii)sz u.

The introduction of the diagonal matrix notation also allows us to represent the
derivatives with respect to the local collapsed coordinate systems. For example,
within a triangular region we can express the derivative with respect to the local
Cartesian coordinate, &1,&> in terms of the local collapsed coordinates 71,72 as
2
Dfl = A( 1—m )Dnz

D& = A(}tz; )Dm + Dnz-

4.1.5.2 Backward Transformation

The backward transformation from coefficient space @pqr to physical space u(¢1,
&2,€3) is defined in equation (4.51) and simply involves the summation of the
coefficients multiplied by the modes. We shall primarily be concerned with the
discrete backward transform where the function w(&1,&2,&3) is evaluated at the
quadrature points

u® (610, &2 63k) = D lpgr Gpgr(€1is 2> Eat)-

m(pgqr)

This operation can be represented in terms of the vector u, @ and the matrix B
as
u = Bi. (4.56)

The two-dimensional case is simply given by k£ = 0 and the summation is per-
formed over p, g only. Although we have represented the solution in terms of the

Formulation note:
Matriz formulation of
the elemental backward

transformation.
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local coordinates (€1, &2, €3) we note that this is equivalent to evaluating the func-
tions at the global coordinates (x1, x2, z3) under the mapping x; = x$(&1, &2, &3).
In general, the discrete backward transformation may be evaluated at any set
of discrete points depending on the definition of the matrix B. For example, a
more evenly distributed set of points may be required graphically to display the
solution. For most computational needs however we will normally evaluate the
basis at the quadrature points.

Nodal Expansions

We note that when using a nodal expansions basis there are special cases of the
backward transform matrix where the matrix becomes the identity matrix. If
the matrix B is generated using a Lagrange polynomial through a set of nodal
points and the basis is evaluated at the same nodal points then B = I. This
arises when using either the non-tensorial simplex basis or the quadrilateral and
hexahedral nodal expansions. When B = I we observe that

u=Bu=1Iu=1a.

As discussed previously, this demonstrates that, for the classical spectral ele-
ment method and Lagrange expansion in simplexes, the expansion coefficients
are simply the values of the solution at the nodal points. We note, however, that
when the basis is evaluated at points other than the nodal points the matrix B is
full. Such a situation would arise even in the tensorial quadrilateral/hexahedral
nodal basis if the quadrature order is not exactly equivalent to the polynomial
order plus one (i.e., @ = P+ 1).

4.1.5.3 Elemental Forward Transformation

In this section we discuss the formulation, using the previously introduced matrix
and vector notation, of the forward transformation. The action of the forward
transformation is that given either a continuous, u(§), or discrete u%(&) function
we determine the expansion coefficients @. There are two commonly applied
approaches using either a collocation or Galerkin projection both of which can
be formulated from the method of weighted residual statement which we will first
review. A similar construction was outlined in one-dimension in section 2.3.2.1.

If we consider a two-dimensional function u(&1,&2) which does not lie within
the polynomial space of the expansion basis there will be an approximation error
between our approximation u’ = Zn o UpgPpq and the function (&) which we
denote by R(u), that is,

u’(é1,&) — u(ér, &) = R(u) (4.57)

or equivalently

<Z ﬂpq¢pq(§17§2)> —u(&1,&2) = R(u).

pq
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Following the method of weighted residuals, we represent the inner product of
both sides of this equation by a presently undefined function v(£1, &2)

(’U, Z’apq(bpq) - (’U, u) = (U’ R(u))7

and set the right-hand-side term to zero, (v, R(u)) = 0, to obtain

(v, Zﬁpq%q) = (v,u). (4.58)

The choice of v(£) will define the type of projection this is illustrated in the
next two sections for the case of a collocation and Galerkin projection.

Collocation Projection - Interpolation

We note that the matrix B introduced in the previous section is directly
analogous to the generalised Vandemonde matrix V introduced in section 3.3.2.
In particular, if we consider the case where the set of distinct points §; is of the
same dimension as the expansion basis then the matrix B is identical to our
previous definition of V' in section 3.3.2. In this case B is square and invertible
and the inversion of this matrix is equivalent to a collocation projection. To see
how this fits into the statement of the method of weighted residuals we write our

approximation as
Ny —1

u(€) = D ingn(é),

n=1

then the methods of weighted residual equation (4.58) implies that

Ny —1

/vau‘s(ﬁ) dﬁ':/ﬂvm 7;1 Unpn(€) d€ m=0,...,N, — 1. (4.59)

In the collocation method we set v, = §(&,,) where §(§,,,) is the Dirac delta
function at the N, discrete nodal points &, and implies that R(u(€,,)) = 0.
The action of the Dirac delta functions on the integrals means that equation
(4.59) can be evaluated as

Nm—1

W(€,) = Y antn(€,) n=0,... Ny—1

n=1

which can be written in matrix form to obtain
u = Byt or = By/u (4.60)

where B/[m][n] = ¢n(€,,)-
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In general, the above formulation can be applied to any function u(€) not
just the approximation u’® (&) and thus we can use it as a technique to interpolate
a function within the region & € Q.

Discrete Galerkin Projection

The discrete forward transform which determines the modal coefficients
from a prescribed function u(€) evaluated at a set of nodal or quadrature points,
can be expressed in terms of the matrix formulation previously introduced as

a= (BTWB)A B W, (4.61)

where we note that the inverted matrix BW B is symmetric in contrast to the
collocation matrix B . We refer to this as a discrete forward transform since if
u(&) is not a polynomial function of similar space as the projecting polynomial
then a collocation projection is being performed when evaluating the function
at the quadrature points to obtain w. We note, however, that the collocation
projection may be onto a richer polynomial space than the Galerkin projection
and so the error associated with the Galerkin projection typically dominates.

In the Galerkin projection we choose the weight function in the method of
weighted residuals (4.58) to be the same as the expansion basis so that v(£;, &) =
ors(£1&2). Equation (4.58) can therefore be written as

(¢rs, Z Upqdpq) = (Frs,u).

p.q

Noting that the coefficients 1,, are independent of £;,&> we can rewrite this
equation as
Z(¢T57 Ppg)lipg = (Prs, ), (4.62)
P.q
which is a scalar equation. If we test this equation versus all N, modes ¢,s we
then have N,, scalar equations to solve for the IV, unknowns degrees of freedom
Upg-

Equation (4.62) is the functional representation of a linear system which can
be solved to determine @,, where the term (¢,s, ¢pq) represents the components
of the two-dimensional elemental mass matrix M, which has a rank equal to
Np,. An identical procedure to the one outlined above using ¢,q» would have led
to the three-dimensional system.

Although equation (4.62) represents the forward transformation it is not im-
mediately clear how to construct the matrix system. First, we need to make
an approximation to represent the inner product discretely by using Gaussian
quadrature. The integral in the inner product on the left-hand-side may be eval-
uated exactly using Gaussian quadrature providing that a sufficient number of
quadrature points are used. The right-hand-side inner product in equation (4.62)
involves the arbitrary function u (&1, &2, £3) which may not be a polynomial. Nev-
ertheless, providing the function w is sufficiently smooth the error in evaluating
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the integral will be consistent with the approximation error. Similarly, by eval-
uating the continuous function at the collocation points we are performing a
collocation projection onto the quadrature points. The discrete form of equation
(4.62) can be written

D (brsr bpg)s tipg = (Grs,u)s, vr, s. (4.63)

Pq

This equation represents a system of IV, scalar equations for every ¢,.

We can now illustrate the use of the matrix and vector notation by ini-
tially considering the inner product of a function v(z1,x2,x3) with a function
u(zy, 2, x3) and is defined as

(v,u)s = /U(Ela§2a§3)u(§1a§2,€3)|J| d&y déa dés.

Representing the integral using Gaussian quadrature we have a discrete approx-
imation such that

Q1-1Q2—1 Qs
(v,u)s = Z Z Zwiijk v(&1s, 25, Eak) w(€ris §25, E3k) [ il (4.64)

i=0 j=0 k=0

where
(v,u) = (v,u)s +¢

and ¢ is the error due to the numerical integration or collocation projection, as
defined in appendix B. If the functions u and v are sufficiently smooth in the
sense that the first () derivatives are bounded, then ¢ will be of the same order
as the approximation error, which is important if this error is not to dominate
[87].

The operation in equation (4.64) can be evaluated using the vectors v and u
and the matrix W as

(v,u)s = vI W, (4.65)

Now to assemble equation (4.63) into a matrix system we note that when
v(€) = ¢r5(€) in equation (4.65) we have the right-hand-side of equation (4.63)
for a single expansion mode. To evaluate the complete right-hand-side of the
matrix system we need to evaluate this inner product over all N, expansion
modes to produce a vector of length N,,. The columns of the matrix B represent
the expansion modes ¢,s at the quadrature points and so to evaluate the inner
product with respect to all modes we replace v in equation (4.65) with B, that
is,

BT"Wum(rs)] = (¢rs, u)s,

where m(rs) represents the consecutive ordering of the expansion modes whose
indices run over r,s. The next step is to express the left-hand-side of equation
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(4.63) in a similar fashion. The left-hand-side is the inner product of every ex-
pansion mode with respect to every other expansion mode which leads to the
elemental mass matrix M:

Mm(rs)][n(pg)] = BT W Blm(rs)][n(pa)] = (¢rs, $pa)s,

where n(pq) is analogous to m(rs) and represents the consecutive ordering of
expansion modes. Finally, the summation in equation (4.63) is identical to mul-
tiplying the mass matrix M by the coefficient vector @ to obtain the matrix
representation of the system (4.63):

(BTWB) i =B Wu.

The solution to this system determines the vector of expansion coeflicients @
from the values of a function at the quadrature points denoted by u, that is,

—1
= (BTWB) B™Wu= (M) B"Wu

which is the discrete forward transform. We note that if u spans the same space as
the polynomial basis used to evaluate B and integration is exact then the above
projection would give an identical answer to equation (4.60) up to numerical
precision.

Galerkin Projection with Nodal Expansions

Just as the nodal expansion basis was a special case for the backward trans-
formation, it is also true for the forward transformation. We recall that for the
spectral element method the the nodal expansion is defined by the Lagrange
polynomials through the quadrature points, implying that

B=B"=1.
Therefore, the discrete forward transform becomes
-1
a=(B"WB) B'Wu

= (IWI) ' WIu

=W 'Wu=u.
Analogous with the interpretation of the forward transformation we observe that
the modal coefficients, @, are simply the values of the solution at the nodal points,

u.

Positive-Definiteness of the Elemental Mass Matriz



Ch. 4 Multi-dimensional Formulation 169

Working back from the matrix formulation to the functional form of the integral
operator it is possible to show that the elemental mass matrix

M =B"WB

is positive-definite. A sufficient condition for the matrix M to be positive-definite
is that
a'Ma >0 V non-zero vectors u.

If we replace M by its full matrix components we find
a"Ma 4" (B"WB)a.
Now, from the definition of the backward transformation (4.56), we see that
a” (BTWB) @ = (Ba)"W(Ba) = u" Wu.
A comparison with equation (4.65) shows that the last expression is simply the
inner product of u®(&1, &) with itself, that is,
uWu = (u®,u)s.

Providing the quadrature order is sufficiently high the integration will be exact
since the u’(&;, &) is a polynomial and, therefore,

(u, u)s = / (W) derdey > 0,

which is positive for any non-zero value of u’(&;, &) thereby proving that M is
positive-definite.

Discrete Galerkin Projection to Physical Space

We have previously considered the projection of the continuous function u(€)
evaluated at the quadrature points w onto the polynomial space to obtain a set
of expansion coefficients 4, for example

a=(M)"B"Wu.
However, if we now want to re-evaluate the projected function at the same

quadrature points we can perform a backwards transform or equivalently multi-
ply by the basis matrix B such that

u® = Pou = B(M) 'B"Wu.
This entire process, denoted by P5, can be considered as a discrete Galerkin
projection to physical space and has the property that P® Pou = P%u, which is
easily demonstrated since
PpPSu =BT (M)"'B"WB(M) 'B"Wu

= B'(M)"'M(M)"'B"Wu

= B'(M)"'B"Wu

= Pu.
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4.1.5.4 Differential Operators: Weak Laplacian

To complete this section we illustrate how to construct a matrix system from a
differential problem and thereby construct the weak elemental Laplacian matrix.

We wish to consider the Galerkin approximation of the two-dimensional Pois-
son equation within an elemental region:

Viu(z) = f(x), (x) € Q°.

The one-dimensional formulation of this equation has been dealt with in section
2.2.1 and a complete multi-dimensional formulation can be found in chapter 5.
To recap the Galerkin approximation of this equation, we take the inner product
with respect to a continuous function v(x) to obtain

(v, Vu) = (v, ).

Applying the divergence theorem to the left-hand-side we obtain

(Vv,Vu)/(vau-n(va)

where 02 is the boundary of the problem and n is the unit normal along the
boundary. The term (Vv, Vu) is the weak Laplacian and written in full in two
dimensions has the form

Ov Ou Ov Ou
Vo, Vu) = | —, = 2.
( v U) (63:1’63:1)+<6m2’63:2>
In a Galerkin formulation the same functions are used to approximate v(x) and

u(x). Approximating all integrals with Gaussian quadrature the matrix form of
the elemental weak Laplacian operator L® becomes

e &1 T &1
L® = {(A(a—)Dgl +A(52 )D52) B} w (A(a—)Dgl +A(52 )sz) B
¢ o€ r &1
+ [(A(a_zz)Dfl +A(a_ggz)D€2) B} W(A(a_)Dﬁl +A( )sz) B,
which can be rearranged into the form
e 0, e 0,
L¢ =BT (DgA(a—g) + Dg;A(a_g)) W (A(a_gll)pgl + A(ai)D&)
+B" (DL A(%) + DLAS2)) W (A(32)Dg, +A(22)Dy,) B,

which also demonstrates the symmetry of this matrix system.

4.1.6 Sum Factorisation/Tensor Product Operations

The sum-, or tensor-, product factorisation technique was first recognised by
Orszag [352] and is considered the key to the efficiency of spectral methods. It
is based on the fact that the expansion is a tensor product of one-dimensional
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functions, which means that many important numerical operations may be nu-
merically evaluated with a notable reduction in operation count as compared to
a non-tensorial expansion.

To demonstrate this technique we consider the evaluation of a summation
over r, s of an array f,s with the functions h;, and hj, for all indices ¢, 7, that is,

P P
Uij = Zz.frshirhjsa V’L,j (466)

If fre = f(&1r,&2s) and hyy = hy(15) and hjs = hs(§2;) then this summation
would represent the interpolation, using Lagrange polynomials, from a set of
points (&1,,&2s) to a set of points (&1;,&2;). If all indices 4, j, k, 1 are assumed
to be of O(P) then the evaluation of this whole operation reduces to an O(P?)
summation over k, [ for each one of the O(P?) indices 7, j and so the total oper-
ation count would be O(P*). However, noting that we can factor the h;,. term
out of the second summation

P P
Uij = thr <Z frshjs> y v iv.ja

we can then evaluate the summation over “s” and replace the terms in brackets
by:

~ P
fjr = Zfrshjs-

To construct fj,. is an O(P3) operation since we are evaluating an O(P) sum-
mation over “s” for all the O(P?) indices jr. The original summation (4.66) can
now be written:

P
Uij =Y hirfjr, Vi, j,

which is also an O(P?) operation as we are evaluating an O(P) summation over
the index r for all O(P?) points i,j. We therefore see that this factorisation
has reduced the cost from an O(P?*) operation to an O(P3) operation which is
the typical reduction for a two-dimensional summation. In three-dimensions it
is possible to reduce an O(P®) operation to an O(P*) operation.

To illustrate this technique we consider the sum-factorisation applied to the
backward transformation and inner product when using both tensor product and
generalised tensor product expansions. Another important operation is differen-
tiation. However, we note that in the example above if we let h;. = Z—’g(fu)
then the summation would have represented the numerical differentiation of the
function f(&1, &) with respect to &;.
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4.1.6.1 Backward Transformation FExample

Recall that the two-dimensional backward transformation evaluated at the quadra-
ture points for a general basis ¢pq(£1,&2) is:

(511562] Zzupq¢pq 611362]) v (iaj)’ (4'67)

p

which can be described by the matrix operation
u = B, (4.68)

where w is a vector of length Ng and denotes the evaluation of u(§1,&2) at the
quadrature points, @ is a vector of length N,,, which contains all the elemental
expansion coefficients, and B is a matrix of dimension Ng - N,, whose columns
are constructed from the expansion modes evaluated at the quadrature points.
We recall that to evaluate the summation (4.67) at all the quadrature points
(&14,&25) or alternatively perform the matrix-vector multiplication would be an
O(P*) operation. This is because each quadrature point involves a summation
over O(P?) modes and there are typically O(P?) quadrature points. In three
dimensions the equivalent operation would be O(P9).

Standard Tensorial Expansion

For the quadrilateral region the tensorial expansion basis can be written as
bpq(§1,82) = ¥y (&)Y (€2). Putting this definition into equation (4.67) and fac-
toring out the term ¢y (&11) we obtain

Py
(&1, &27) Zwa €14) {Zapqwg(szj)}. (4.69)
q=0

We note that to evaluate u(&1,£2) at an arbitrary point is still an O(P?) opera-
tion. However, if we wish to evaluate the summation at all the O(P?) quadrature
points 14, §2; we can use two steps:

fp(&25) Z tipgiby (§27) (4.70a)
Py
u(€rir &) = > (&) fo(62)- (4.70D)
p=0

Inserting (4.70a) into (4.70b) recovers equation (4.69). In step (4.70a) the array
fp(&2;5) is evaluated by summing the modal coefficients, multiplied by the second
part of the tensor expansion g (&25) over ¢ at every &; point and for every p
index. This operation is equivalent to performing a one-dimensional backward
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transform and requires extra storage for an array of size O(P?). The summation
for every entry in this array is an O(P) operation and therefore the total cost
to generate f,(&2;) is an O(P3) operation. However, the second step (4.70b) is
now independent of the summation in ¢ and so it is also an O(P?) operation
involving an O(P) summation at O(P?) points £, &2;. In summary, we have
replaced the O(P*) operation (4.69) with two O(P3) operations (4.70a),(4.70b)
and an extra array of size O(P?).

In three-dimensions the backward transformation for a hexahedral expansion
is

u(&1i, €25, §31) = Zli/fz(éu) {221/13(523‘) {ZS ﬁpqri/ff(fsk)}} : (4.71)
p=0 q=0 r=0

This summation can be evaluated at all the O(P3) quadrature points in an
O(P*) operation using a three step process of the form:

Ps
qu (53]6) = Z ﬁpqr"/’ﬁ (§3k) (472&)
r=0
— P2
Fol6ass Eak) = D 03 (€2) Fpa(ar) (4.72b)
q=0
Py ~
u(&1i, €25, E3k) = Zl/ig(fu)fp(ézj,fgk). (4.72¢)
p=0

In this three-dimensional case, we have replaced the O(P%) operation (4.71) with
three O(P*) operation to evaluate the steps (4.72a), (4.72b) and (4.72c). This
also requires memory for two O(P3) arrays to store fp,(sr) and f,(E2;).

Generalised Tensorial Expansion

For the hybrid regions where the expansion bases are of the form ¢, = ¢y gq bar

the sum factorisation technique may still be applied in a very similar fashion to
the standard tensor product regions. However, whereas for the quadrilateral and
hexahedral expansions it did not matter which part of the tensor product we
factored out, for the generalised hybrid expansions there is only one choice of
factorisation which maintains the efficiency. To illustrate this point, consider the
backward transformation of the triangular expansion ¢p,(§1,82) = 95 (nl)zbgq (n2)
where 11 = 2(14£1)/(1 —&2),m2 = &

u(isn2g) = Y Y dipg Pir(m1i) b, (12)-
P q

We are unable to factor out the term ¢§q(ﬁ2j) because it is dependent upon both

indices p and ¢ and so we can only factor the ¥y (71:) term to arrive at
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Figure 4.7 Illustration of the mapping procedure for the physical expansion coeffi-
cients corresponding to the modes shown in the left plot to the two-dimensional array
Upq shown in the right plot.

u(nin2;) = Y e (ni) {Z Qpq wzq(m} : (4.73)

P

which can be evaluated in two steps as:

fo(&25) = Zﬁpq T/ng(&j) (4.74a)

w(€rir€a5) = > W (&1a) fo(62): (4.74b)

Since the expansion coefficients 7, depend on both indices pg there is no ex-
tra expense in evaluating a tensor product of this form as compared with the
structured case. However, we have deliberately omitted any limits on the sum-
mation indices over p and g. For the orthogonal triangular expansion the indices
are close packed and the range for p,q is (0 < p,q;p < P1,p+ ¢ < P), how-
ever, for the modified triangular expansion the indices, and therefore 1,4, are
not close packed. Nevertheless, it is possible to produce a sparse array of coeffi-
cients i, which will allow us to perform the summation (4.74a) over the range
(0 <p< P;0 < g < P) or, more efficiently, over every non-zero entry of .

To illustrate how to generate the non-sparse form of #,, we consider the
example shown in figure 4.7. This figure shows all (P + 1)(P + 2)/2 expansion
modes for the modified triangular expansion when P = P} = P, = 4. We recall
that each mode is constructed from the product of two one-dimensional functions
e (m)Yh, (12) (see section 3.2.3).

In figure 4.7 we also see a numbering system for every physical mode which
can be arbitrarily defined. In this case we have adopted the convention that the
vertex modes are labelled first followed by edge modes and then the interior
modes. The location of the modal coefficient within the array corresponds to the
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p, q indices used to generate the principal function mode wgq (&2) as shown in the
right hand illustration in figure 4.7. Therefore the construction of this mapping
has a physical interpretation since if we consider the bottom-left corner of the
array as being at (191 = 0,72 = 0) then this is also the corner where the vertex
modes has a unit value. Similarly, the edges along which the modes have a non-
zero value relates to their location within the two-dimensional array. Finally, the
interior modes are related to the interior of the array where ¢ runs fastest.

The final point to note is that the degenerate vertex mode, labelled vertex
“2” in figure 4.7, must be entered twice within the array 4,, as it is generated
by combining the shape of two expansion modes ¢o.p,(11,12) + épy,p, (11, 72)-
This condition arises from the fact that

1+ &
2

bo,p, (§1,&2) =

is being represented in terms of the principal functions vy (1) and wgq(ng) as

¢o0.p, (£1,&2) = (1771 n 1+m) 1J;n2

2 2 = [16(m) + ¢p, (m)] Yop, (n2)-

The prismatic expansion is analogous to the triangular expansion plus a tensor
product of the function ¥%(£3) and so has a similar mapping to this example.
However, for the pyramidic expansion the top vertex is constructed from four
components of ¢p,-. Accordingly, the coefficient of this vertex will need to be
mapped to the four locations. Similarly, for the tetrahedral expansion the top
vertex relates to four locations where as the base degenerate vertex and the
degenerate edge both have double entries in the unpacked array.

4.1.6.2 Inner Product

The inner product with respect to all two-dimensional expansion modes requires
the evaluation of the summation

(bpas s = DY bpg(&rir &) wiw; T (61, §25) Tipg(E1s, S25), v (p,q),
L2

(4.75)
where w;, w; are the weights in the &1, £, directions and J(&1;, £25) is the Jacobian.
The backward transform and the inner product (4.75) are closely related and may
be considered as the transpose of each other. To appreciate this we can consider
operation (4.75) in matrix notation:

BT (W], (4.76)

where u is the vector of function values at the quadrature points, B is the basis
matrix, and W is a diagonal matrix containing the quadrature weights multi-
plied by the appropriate Jacobian. Since W is a diagonal matrix evaluation of
the product Wu involves a multiplication at every quadrature point. We can,
therefore, consider the bracketed term as a new vector f [f = (Ww)] and so
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the principal operation is the matrix multiplication B f which is the trans-
pose operation to the backward transformation (4.68). As with the backward
transform, to evaluate (4.75) or the matrix multiplication B” f would require an
O(P*) operation in two dimensions and an O(P°) operation in three dimensions.

For standard tensorial expansions the application of the sum factorisation
technique is analogous to the previous description of the backwards transforma-
tion. The generalised tensor product is also similar. The ordering of the factori-
sation, however, needs to be reversed and so we will consider this case in more
detail.

Generalised Tensorial Expansion

When considering a generalised tensorial expansion of the form ¢, = 1/1;1/)2q
bqr the sum-factorisation process may still be applied although we are again re-
stricted as to which product may be factored. Considering the case of a triangular

expansion where ¢pq (€1, &) = ¥ ()Y (n2) and (m = 2(1 +&)/(1 — &), 10 =
&2) the inner product becomes

Q1—-1Q2—1
(¢anu)6 = Z Z 1/1;(7711')7/)Zq(772j)w¢wj<](771i7772;‘)“(7711'7772;')

i=0 j=0

where w; = wjlfo /2 which accounts for the transformation of the coordinates
from (€1,82) to (m1,m2). If we factor out the term 1y (n1;) then the innermost
summation will still involve a sum over ¢ for every nz; points as well as all the
modes over p, ¢. This would involve an O(P*) operation and can be as expensive
as the unfactored case. However, if we factor out the 9% (n2;) term then the
summation becomes

Q2—1 Q1—1
(Ppgsu)s = Z 1/111;1(772]‘){ Z w,';(?hi)wiwj«](?hia7723‘)“(7711',772j)}a

=0 i=0

which can be evaluated in two steps:

Q1—-1

fo(&25) = Z Yy (§16)u(8i, So5)wiw; J (€14, €25) (4.77a)
=0
Q2—1

(bpgrt)s = > U0, (&2) fo(E2s), (4.77b)
=0

where both steps (4.77a),(4.77b) are O(P) operations requiring O(P?) extra
memory for the array f,(£2;). If we were using an orthogonal expansion the range
for p,q would be (0 < p,q;p < P1,p+ q < P,). For the modified C° continuous
expansion, however, we need to sum over p, q¢ according to the local sparsity. The
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Figure 4.8 Illustration of the construction of a C° global expansion from two local
modal expansions of order Py = P> = 4. The C° continuity condition can be simply
ensured by matching the vertex and boundary modes of similar shape.

sparseness of the t,q when P = P, = P, = 4 is shown in figure 4.7 where we
interpret 4ip, as the inner product tip, = (Ppg,u)s. Similarly to the backward
transformation, when using an unstructured expansion special attention must
be paid to the degenerate vertices.

4.2 Global Operations

The operations described in section 4.1 were all local in the sense that they
only involved a single element and no information was coupled from any other
element. In general, however, we are interested in solving second-order partial
differential equations which require that some form of continuity is maintained
between elemental regions. Our primary focus in this section will be the classical
Galerkin method where continuity is typically imposed by making the approxi-
mation gobally C° continuous. Alternative continuity requirements are imposed
in techniques such as the mortar method or discontinuous Galerkin methods but
we leave discussion of these technique to sections 7.4 and 7.5. We note, how-
ever, that all the local operations described in the previous section are equally
applicable to all spectral/hp element formulations.

To construct a globally C° continuous expansion from elemental or local con-
tributions we need to introduce a local to global assembly process, often referred
to as direct stiffness summation or global assembly. This process was introduced
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in one-dimension in section 2.3.1.4. This type of assembly is particularly impor-
tant in setting up global matrices such as the Mass and Laplacian systems. In
section 2.3.1 we also saw how, in one-dimension, the global linear finite element
can be decomposed into elemental contributions of two similarly shaped linear
varying modes.

In what follows, we will adopt a similar formulation for the multi-dimensional
expansions to that defined in chapter 3. We recall that an important part of
the construction of the elemental bases for Galerkin formulations was the de-
composition of the basis into modes which contribute to the expansion on the
boundary of an element (boundary modes) and the remaining modes which were
zero on all boundaries (interior modes) (see section 3.1.1.1). As shown in figure
4.8 this boundary /interior decomposition allows us to construct a C¥ expansion
by matching boundary modes of a similar shape. This figure illustrates all the
modes used in a quadrilateral modal expansion of order P; = P, = 4, and we
can appreciate that to construct the global expansion we can simply match the
vertex and edge modes of similar shape.

In a practical implementation, it is advantageous to perform most operations
in a local environment within each element and then assemble the local contri-
butions to form the global system. However, to enable us to do this we need a
mapping which relates to the global system from the local system. The defini-
tion of this mapping is central to the global assembly process and is discussed in
section 4.2.1. Having constructed an assembly procedure we then illustrate the
construction of a global matrix system in section 4.2.2 using an analogous ma-
trix and vector notation which is introduced in section 4.1.5.1. Finally, in section
4.2.3, we introduce a matrix manipulation technique known as static condensa-
tion which takes advantage of the global matrix structure that arises for many
spectral/hp element expansions and allows more efficient inversion of the global
matrix.

4.2.1 Global Assembly and Connectivity

Before describing the global assembly procedure we need to define the local
expansion modes ¢,q(&1,&2) within our global solution domain Q. If € is di-
vided into N; contiguous elemental regions denoted by €2¢ the expansion modes
?54(&1,&2) are defined as:

(& 9 b Qe
raq (51’ 62) {Om (61 52) (()ilief\?v)isi
where
&= [x§) 7" (1, 22), & =[5 (21,72)

and x§ represents a bijective mapping from (&1, &2) onto (z1,z2) € Q¢ (as intro-
duced in section 4.1.3). We see that the local expansions within Q¢ are extended
to the global domain 2 by having zero support everywhere except in the re-
gion °. Clearly, the elemental boundary modes cannot be C° continuous in the
global region (2. The interior modes, however, which are, by definition, zero on
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Global L ocal

a)

Figure 4.9 Illustration of local to global assembly. If we have a global expansion
as represented in figure (a) it can be decomposed into two elemental contributions
multiplied by the same global coefficient 4. To integrate a function w(zi,x2) with
respect to the global mode, as illustrated in figure (b), the integration in the global
region is the sum of the integration in the local regions.

the boundary of the elements 9Q¢, are C° continuous in the global region. This
implies that the interior elemental degrees of freedom are also global degrees of
freedoms.

From a practical point of view it is preferable to treat all operations locally
within the standard elemental region where it is easier to define all the salient
operations like integration and differentiation. This is possible if we also construct
a mapping procedure which assembles our global system from the local systems
defined on each element. The process is as follows:

1. Formulate a Galerkin elemental problem with respect to a set of global
modes which constitute our trial space X.

2. Split each global mode into local contributions over every element where
all operations are performed.

3. Re-assemble the global system.

When we split the global expansion modes, as shown in figure 4.9(a), into
their local elemental contributions the expansion coefficient 4 is transmitted to
both of the elemental regions. However, when we need to integrate this global
expansion mode with respect to some function u(x1, z2) as shown in figure 4.9(b),
this may be performed locally with respect to the elemental modes and then
summed together to obtain the integral of u(xy,z2) with respect to the global
mode.

We recall that the Galerkin method is constructed from the weak problem
which is an integral form. We do not need explicitly to assemble the global
expansion modes as we can treat the integration locally and sum the elemental
contributions. Nevertheless, in order to describe the solution within the elemental
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Trianglel Triangle 2 Triangle1 Triangle2

& >

Local Numbering Global Numbering

Figure 4.10 Illustration of local and global numbering schemes for a region containing
two triangular elements. The numbering corresponds to a triangular modal expansion
where Pi = P» = 2, which only includes boundary modes. The orientation of the local
coordinate system for each triangle is indicated by the arrow system.

region we will need first to perform the one-to-many mapping which takes the
global system to the local elemental system. The assembly process is referred to as
direct stiffness summation or global assembly. The word summation is somewhat
misleading as only adjacent boundary modes of similar shape need to be added
together and so we shall refer to the process as global assembly.

We define the local degrees of freedom as all the elemental expansion coeffi-
cients over all elements. We have previously introduced the vector @ to represent
a consecutive list of all expansion modes within an elemental region. If we now
use a superscript e to denote the elemental vector of expansion coefficients @°
then the vector of all the local degrees of freedom, denoted by 4, is,

a =a° = i , (4.78)
a].vel

which is of dimension N.,r. We also introduce the notation that an underlined
vector implies the extension over all elemental regions. In section 4.2.2 we will
see that an underlined matrix denotes a block diagonal extension of the matrix.
To complement 4; we define @, to denote the global degrees of freedom which
is a vector of dimension Ng,¢. The many-to-one mapping from global to local
degrees of freedom can be represented by the matrix operation A, that is,

@ = Ad,. (4.79)

The matrix A is a very sparse rectangular matrix of dimension Neor X Ngof
whose values may typically be either 1 or —1 depending on the shape of con-
necting modes. For a nodal expansion all entries are positive. Typically only one
entry will appear on any given row of the matrix. However, for different types
of continuity conditions, such as the constrained approximation where two geo-
metrically non-conforming elements meet (see section 7.3), multiple entries may
appear on rows and columns of the assembly matrix. To illustrate the form of
the assembly matrix A we consider the case shown in figure 4.10 where we have
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a'lo]] 11 T

a'[1] 1

a'[2] 1 [41,[0] ]
a'[3] 1 (1]
all4] 1 Ty [2]
a'[5] 1 Gg[3]

iy = = Qg [4]

a2[0] 1 Gg[5]
a’[1] 1 Gy [6]
a?[2] 1 Ty [7]
a2[3] 1| [dg[8]
a’[4] 1
a5 ] L LI

Figure 4.11 Relation between the local 4; and global @4 degrees of freedom using
the assembly matrix .A.

a domain containing two triangular elements. In this example we are consider-
ing an expansion order of P, = P, = 2 which only contains boundary modes.
Therefore, the number of modes in each element is N, = (P +1)(P2+2)/2 =6
and the total number of local degrees of freedom is Neoy = 2N, = 12. In the
left-hand plot of figure 4.10 we see the local numbering of the N,,, = 6 elemental
modes. This is dependent upon the orientation of the local coordinate system
within the triangle as indicated by the arrow system. We have numbered the
local degrees of freedom according to the convention where vertices are labelled
first followed by edges, then faces (in three-dimensions), and finally the interior
modes.

To enforce C° continuity between the two triangles we must match the bound-
ary modes (1,4,2) in triangle 1 with the boundary modes (1,4, 2) in triangle 2.
This is achieved by assigning a global numbering scheme of Ng,; = 9 global
degrees of freedom as shown in the right-hand plot. Similarly to the local num-
bering scheme, the global numbering convention applied is numbering all global
vertices first followed by all global edges, faces (in three-dimensions) and finally
the interior modes where interior elemental blocks are numbered consecutively.
This type of global numbering scheme, particularly when interior modes are
number consecutively, is also convenient for the static condensation technique
described in section 4.2.3.

The assembly matrix A which relates the local degrees of freedom 4, to
the global degrees of freedom 4 is shown in figure 4.11. In this figure we see
that every row of the matrix .A contains only one entry signifying the fact that
each local degree of freedom is related to one global degree of freedom. Every
column of the matrix A contains at least one entry although for geometrically
non-conforming elements or mortar constructions there may be more than one
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entry. In the case where every row contains only one entry the summation of
the absolute value of the columns tells us how many local modes contribute to
construct a global degree of freedom, which is known as the multiplicity of the
mode.

We are now in a position to define the assembly process from local to global
degrees of freedom. The action of the assembly process can be mathematically
expressed as the transpose of A but is heuristically captured by the integral
operation similar to the case shown in figure 4.9. If we consider the inner product
function u(z1, x2) with respect to the global basis @, (x1, z2),

fg[n]:/Qu(xl,zg)q)n(zl,zg), 0 <n < Ngoy

this series of integrals can be expressed as elemental contributions, such that

I,[n]= /Qu(xl,zg)@n(zl,zg) = /eu(zl,xg)d)m(xl,:cg)dzldzg (4.80)

where n(m, e) represents a unique global indexing of each elemental modal con-
tribution m over each element e. This will be defined in term of a mapping array
maple][i] shortly. The evaluation of the integrals (4.80) over all global modes
0 <n < Ngor can be represented in matrix form as

I,=A"I,=A"I".

In the above equation I is analogous to the definition (4.78) where

I'[m]= /eU($1,$2)¢m($1,x2)dx1dx2,

and m denotes the summation over all elemental modes which may involve a
tensor product basis ¢, (p, ¢) = ¢pq (see section 4.1.5.1).

We note that the matrix operations A and A7 are not the inverse of each
other, and therefore

a, # A" Al
The operation of A is, a scatter from a global to local system whereas the
operation of A7 is a global assembly or summation procedure. The inverse of the
A matrix would normally be considered as a standard “gather” type procedure.
The operations of A and A7 are the key constructs to form a global system
when using the Galerkin technique.

As an aside, we note that all the boundary modes touching the solution
domain boundary have been treated as global degrees of freedom. As we shall
see in section 4.3.1, boundaries with Neumann conditions are typically treated
in this fashion. However, boundaries associated with Dirichlet conditions are
not part of the Galerkin test space and therefore some reordering is required to
remove them from the global degrees of freedom.
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In a numerical implementation it is not practical, or even desirable, to con-
struct A explicitly due to the size and sparsity of the matrix. The operation may
be numerically implemented by setting up a mapping array which we will de-
note as n(e, 1) = maple|[¢]. This array is of dimension [N¢; x max.(N,,)] where
N,,,° is the number of expansion modes in an elemental expansion. Typically,
Np,¢ will be fixed over all elements although, in general, the value may change
between elements. The array map[e][i] contains the global value of the i-th ex-
pansion coefficient within the e-th element. The example shown in figure 4.10
would therefore have an array maple][i] of the form:

0 3

1 2
mapf1][i] = { map[2][i] = { § -

5 5

6 7

The total number of entries of the map[e][i] is the same as the number of non-
zero entries in A. The scatter operation A from i, to %; can now be evaluated
by:
Doe=1,N,
Doi=0,N,°—1
@°[i] = signle][i] - @y [maple][i]]
continue
continue

s =Aa,  (481)

where sign[e][i] is an array of similar dimensions to maple][i] containing 1 or —1
entries depending on the modal connectivity between two elements as discussed
in 4.2.1.1. For a nodal expansion sign[e|[i] would only contain positive entries
and so they may be removed from the loop. The global assembly operation can
be evaluated as:
Do e = 1, Nel
Doi=0,N,°—1

I, [maple][i] = I,[maple][i]] L
+sign[e][i] - I°[i] eI, =A"1. (482)
continue
continue

If the inner summation did not contain the ¥4[map|e][¢]] term on the right-hand
side it would be the standard “gather” operation.

4.2.1.1 Local to Global Boundary Mapping: Global Boundary Assembly

We have seen that the global assembly procedure primarily involves boundary
mode connectivity as the interior modes may be independently numbered as
global degrees of freedom. We shall also see in section 4.2.3 that the assembly
procedure need only involve the boundary modes as the interior modes may be
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removed from the full matrix problem using static condensation. In this case
we only require a boundary mapping bmap|e][i] rather than the full numbering
system maple][i].

We assume that the local degrees of freedom are ordered so that the bound-
ary modes are listed first. If there are nyle] boundary modes in the e-th element
the local to global assembly process is numerically evaluated as

Doe=1,N,
Do i = 0,nple] — 1 A
I[bmaple][i]] = I[bmaple][i]]

)] =i, =ATT,
ysignle][i] - I [i] gL

(4.83)
continue
continue

which is identical to maple][¢] in (4.82) save that we are now only using the first
ny|e] elements of the mapping. I “and I ¢ have their usual meaning referring to the
local and global degrees of freedom even though only the entries corresponding
to the boundary modes are being used. Similar to ‘bmaple][i]’, the array sign[e][i]
need only be of dimension N,; by the maximum size of ny[e]. We see from (4.83)
that the equivalent matrix operation is denoted by AbT which is a submatrix of
AT and operates on the vector of all local boundary degrees of freedom denoted
by ©;. If we know how to construct bmaple][i], it is a straightforward extension
to generate maple][i] by adding a unique block of global degrees of freedom equal
in length to the number of interior modes within the element.

Modal Edge Connectivity

In figure 4.12 we see all the modes for an order P; = P> = 4 expansion in two
quadrilateral elements. Note that each mode is to be interpreted as spanning the
entire element. When considering an expansion with more than one edge mode
we need to consider the local orientation of the element. As shown in figure 4.12,
depending on the orientations of the local coordinate systems within the element
the sign of odd-ordered modes may need to be reversed. This is in contrast to
figure 4.8 where the cubic edge mode had a similar shape on either side of the the
intersecting edge. The reason for the sign negation is that the elemental modal
shapes are defined with respect to the local coordinate system (&1, &2). If the local
systems are orientated so that the two neighbouring coordinates are in opposite
directions then the sign of one odd-shaped mode will need to be reversed.

It also appears from figure 4.12 that the order of the edge modes needs to
be reversed. This is, however, not the case. The hierarchical boundary modes
only have a physical interpretation insofar as they are associated with a physical
vertex or edge within the region. Therefore, we number the edge modes according
to their polynomial order (that is, lowest polynomial order mode has the lowest
edge number). For the example shown in figure 4.12, the numbering of the local
modes is shown in figure 4.13 where we have placed all numbering for a given
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Figure 4.12 Illustration of the construction of a C° global expansion from two local
modal expansions of order P; = P» = 4. To ensure c° continuity the boundary modes of
similar shape need to be matched. Depending on the orientation of the local coordinate
systems the modes of odd order may also need to be negated.

edge at the centre point of the edge. If we follow a similar convention when
numbering the global modes, as shown in the right-hand side of figure 4.13, the
modes of similar polynomial order (which we need to match) will have the same
global number and so we are just left with the issue of sign reversal. In this
example, the mode of cubic order needs to have its sign reversed in one element
as the local coordinate system has an opposite direction along the intersecting
edge. By convention, we assume that the element with the lowest number has
precedence and therefore mode 14 in triangle 1 will be negated. Therefore, when
assembling the array signle][i] we require that sign[1][11] = —1.

In general, we need an automatic procedure to identify which edges need to
have odd modes negated. Such a procedure may be constructed by considering
the sign of the inner product between two vectors representing the global co-
ordinate direction of an edge. Since we always know the vertices which define
an element, we let Aacgdg denote a vector parallel to an edge in an element “e”
oriented according to the local coordinate direction of & or &. For example,
along the bottom edge where ({2 = —1) we have

Azgy, = );;8: :B : i;g:}: :3 oo =x1(6, &) w2 = x2(61, &2)

or along the edge where &; = —1
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Element 1 Element 2 Element 1 Element 2
4 7
14 ‘Oﬂv 2 1 1 & oo Z 5
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789 1514 13(101112 654 91011 1716 15|15 16 17 201918
ﬁ 15 14 26
14
2 33 13 40—4 2 B 33 & a4
Loca Numbering Global Numbering

Figure 4.13 Numbering system for a hierarchical quadrilateral expansion of order
P = P> = 4 where the arrows indicate the local coordinate system. The individual
edge modes have no physical location associated with the expansion and so are listed at
the centre-point of the edge. The number nearest the edge corresponds to the edge mode
of the lowest polynomial order. Following a similar ordering for the global numbering
means that modes of similar order are automatically matched.

Aty = | TP TN m =68 — @)

~1,
~1,
To determine whether the odd edge modes need to have their sign reversed on
an edge between element e and element k we apply the test if

Az, - Axk,, <0 (4.84)

and

k>e

then negate odd modes. The extra criterion k > e simply ensures that only one
of the two edge modes is negated and implies that we have some information
about the edge connectivity. This test only identifies whether the local coordinate
systems along a specific edge are in the same or opposite directions. An identical
procedure may be applied to edges of a triangular region by use of 11, 72 instead
of &1,&. For edges in a three-dimensional mesh an analogous test may be set
up where Azg,;, is now a three-dimensional vector. In this case, the number of
elemental domains along an edge will typically be greater than two and therefore
the test needs to be performed relative to the edge from the element with the
lowest number.

Nodal Edge Connectivity

When using a nodal expansion the modes may be identified with a physical
location of the nodal points where the modes have a unit value. In the nodal ex-
pansion, we are not concerned with matching edge modes of similar order (as in
the hierarchical expansion case) but with matching modes with the same nodal
location as illustrated in figure 4.14. The physical interpretation of an expansion
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Figure 4.14 Illustration of the construction of a C° global expansion from two local
nodal expansions of order P = P> = 4. To ensure o continuity the boundary modes
with similar nodal locations need to be matched.

mode being associated with a nodal position makes it easier to generate a num-
bering system, by numbering the location of the nodal points along an edge as
shown in figure 4.15.

In figure 4.13 we have chosen to locally number the elemental degrees of
freedom using an anti-clockwise convention where the vertex modes are listed
first. Using an anti-clockwise convention ensures that one side of the elemental
matching is always reversed with respect to the global numbering. For example,
the modes in element 1 have locally increasing numbers (13,14, 15) correspond-
ing to globally increasing numbers (15,16,17) whereas the modes in element 2
have locally increasing numbers (10,11, 12) corresponding to globally decreasing
numbers (17,16, 15). If we had ordered the local edge modes according to the
direction of the local coordinate system, we would have a similar situation to
the hierarchical expansions where we would have to determine if we needed to
reverse the ordering depending on the direction of the local edge coordinate. For
the nodal expansion in two-dimensions, the use of an anti-clockwise local num-
bering scheme implies that the ordering is always reversed between two elements
and therefore no extra test is required.
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Element 1 Element 2 Element 1 Element 2
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Figure 4.15 Numbering system for a nodal quadrilateral expansion of polynomial
order Pi = P> = 4. The arrows indicate the orientation of the local coordinate system
(&1,&2). In a nodal expansion the edge mode can be physically identified with the nodal
points of the Lagrange polynomial. Numbering each nodal location therefore provides
a global numbering scheme which will ensure C° continuity.

and opposite directions

Figure 4.16 Example of some of the different local coordinate alignments when two
hexahedral elements are matched. The local Cartesian coordinate are denoted by the
(1,2, 3) axis and the local face coordinates are denoted by the (a,b) axis.

Modal and Nodal Quadrilateral Face Orientation and Connectivity

One of the complexities of matching three-dimensional shapes with similar shaped
faces as compared to the two-dimensional edge matching is the number of dif-
ferent orientations that can be imposed. This issue is highlighted in figure 4.16
where we show some of the different local face alignments between the quadri-
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later] faces of two hexahedral elements. In this figure the (1,2,3) axes systems
denotes the local Cartesian system of each hexahedral element. Similarly the
(a,b) axis system denotes the local face coordinates where the a direction is
aligned to the lowest local Cartesian coordinate within the local face. From
this figure we see that, as in the two-dimensional case, local coordinates can be
aligned in opposite directions. However, unlike the two-dimensional case we also
have a possible situation where local coordinates can be transposed (i.e., the ‘a’
direction in one element is aligned to the ‘b’ direction in another).

From the previous two subsections we have observed that when the local co-
ordinate direction is reversed then, in a modal expansion, we expect to use the
same number scheme in bmapl[e][i] although there will be sign changes in the
array sign[e][i]. However, for a nodal expansion the reversing of the local coordi-
nate direction necessitates a change in the local array numbering, i.e. bmap|e][]
but does not influence sign[e][i]. Therefore, considering figure 4.16 in case (1)
we expect the same bmaple][i] and sign[e][i] in both faces. In case (2) of figure
4.16 the modal numbering is not altered between the two faces although there
is a sign change due to the local ‘a’ coordinate reversing direction between the
two faces. For this case there would have been a numbering alteration if we were
using a nodal case. Finally, for both cases (3) and (4) in figure 4.16 we require
a transposition of the numbering scheme for both modal and modal expansions
due to the transposing of the local coordinate system.

In assembling bmap[e][i] and sign|e][i] between two modal quadrilateral faces
we therefore need to know how a face is orientated and then whether each local
axis is aligned in the same or opposite directions. Determining how the local
face coordinates are orientated with respect to each other permits us to locally
number the face degrees of freedom and therefore construct the component of
bmapl[e][i]. Determining whether the local axes of the two faces are aligned in the
same or opposite directions informs us whether or not the odd order components
of the expansion basis in each coordinate direction need to be negated in one of
the adjacent faces and so permitting the construction of sign[e][d].

There are many different techniques which could be applied to determine the
orientation and sign of the local face coordinates. As a potential example we
can consider the following construction. If we are considering a face defined by
&3 = —1 in element e then linear two edge vectors can be defined as:

-1,-1,-1)]
~1,-1,-1)
~1,-1,-1

)]

_Xl(lv 717 71) - Xl(
Amz = X2(17 -1, _1) - X2(
_X3(17 _17 _1) - X3(

)

sz = X2(7171771)7X2(71771771) )

where

r1 = x1(£1,82,83); 22 = x2(&1,62,&3)5 w3 = x3(&1,&2,€3)-
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We then analogously define two edge Vectors,Am’; and Am’g in the adjacent
face of element k under the constraint that they have the same common vertex,
IX5(—1,—-1,-1),x5(—1, -1, -1),x5(—1, -1, —1)]. Whether the (a, b)¢ coordinate
system in element e has a transpose orientation to the (a,b)* coordinate system
of element k£ can be determined by an inner product test of the form:
If

Azt - AxF = |Ax||Axh] (4.85)

then
Azl || Aat = ot | db, b | b

else
Azl | Axy = af | V¥, b0 db

In a modal expansion if Az’ is parallel to Az" then the modes in each face
can be numbered in an identical manner. However, if Az is parallel to A:cf we
have to set up a transposed numbering system in one of the two adjacent faces.
For example, if ¢f (£1,&2, —1) represents the (P —1)(P — 1) modes within a face
of element e then the matching modes in a face of element & must be

¢£g0(§17§2571) ::I:ngpo(gl,gQ,*l), 0 <p7q<P7 (486)

where we have assumed that the connecting face in element k is defined by
{3 = —1. Therefore, if the mapping bmaple|[i] for ¢5,, is initially chosen then
the mapping in bmap[k][i] must be ordered so that condition (4.86) is satisfied.

Finally, we need to determine the possible sign change between modes to set
up the array sign[e][i] for the global assembly process. Providing the local edge
vectors Az, Ams, ... are defined so a positive vector is aligned in the positive
direction of the local axes, then the sign of the matching modes can be determined
by applying test (4.84). Clearly the local edge vectors used in this test depend
on whether the coordinates are transposed or not. Testing first the a and then
the b direction of a reference face indicates whether the odd numbered p and ¢
index modes require negating within the reference face for the two face modes
to match identically.

For a nodal face we could adopt a similar procedure where we use the ori-
entation test (4.85) to determine how the nodal points in a face are orientated
relative to the adjacent face. However, a simpler, although more expensive, ap-
proach is to number the nodal locations in one face and then determine the global
numbering of the adjacent face by matching every nodal (z1, 22, 23) position in
one face with the other. As the numbering procedure may be considered as an
overhead cost at preprocessing stage there is generally no concern over the cost
of this approach.

Modal Triangular Face Orientation and Connectivity

Similar to the quadrilateral face, in matching two triangular faces we also have
to consider the orientation of a face. To generate a C° global expansion we
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Local

Figure 4.17 To ensure that the modal expansion can be assembled to form a C°
expansion, the collapsed coordinate system in the triangular faces must be aligned as
shown in plot (a). Connection of two faces where the local coordinate system is oriented,
as shown in plot (b), is not permitted.

want to match face modes of similar shape. For modal expansions the use of the
collapsed Cartesian system means that triangular faces have a local coordinate
system which is not rotationally symmetric. This point is illustrated in figure 4.17
where we see the two tetrahedral regions marked with their surface coordinate
lines. To be able to match modes within a triangular face we require that these
coordinate lines are orientated as shown in figure 4.17(a) but not as shown in
figure 4.17(b). This would appear to be rather constraining. We are, however,
free to specify how the local coordinate systems within an element are orientated.
For an arbitrary conforming tetrahedral mesh, it is possible to orient all the local
coordinate system so that the coordinate lines are consistent. Referring to the
two vertices where the coordinates system degenerates as the local base vertex
(&1 = —1,& = 1,& = —1) and the local top vertex (&, = —1,& = —1,&5 = 1)
an orientation algorithm suggested by Warburton [485] is:

assuming that every global vertex has a unique number then for every element
we have four vertices with unique global numbers:

(i) Place the local top vertex at the global vertex with the lowest global number

(i) Place the local base vertex at the global vertex with the second lowest global
number

(iii) Orient the last two vertices to be consistent with the local rotation of the
element (typically anti-clockwise).

This algorithm is local to each element and can be implemented at a pre-
processing stage. Although it is possible to guarantee this connectivity for tetra-
hedral meshes, it is not possible for a general mesh using tetrahedrons, prisms,
and pyramids. Nevertheless, enough permutations of connectivity still exist to
provide a wide range of flexibility even when using all the three-dimensional
hybrid elements [485].

The orientation criteria simplify the numbering and sign evaluation process
in a triangular face as all faces have a similar orientation. Therefore, for a hi-
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erarchical/modal expansion the global numbering on one face may be directly
applied to the adjacent face without any index swapping. There is still, however,
the possibility for modes which vary in the base direction (i.e., 77 direction on
face 1 or 2, and 72 direction on face 3 or 4) to require their sign to be reversed.
This may be determined by using the edge test (4.84).

The non-tensorial nodal expansions are rotationally symmetric and therefore
do not have to comply with the above orientation criteria. However, application
of this criteria in the case of a nodal tetrahedral expansion can still reduce the
potential orientations of adjacent faces and thus simplify the construction of a
numbering scheme. In this case the edge test (4.84) would indicate whether the
number should be reversed in one direction between two adjacent faces. Never-
theless, similar to the quadrilateral faces, with a nodal expansion comparison of
the coordinates of nodal points can again be used to determine an appropriate
face ordering for bmaple][i].

4.2.2 Global Matrix System

Now that we have a way of assembling the global system from a local system, we
can apply this technique to generate global matrices from the elemental matrices.
To illustrate this process we can consider a global forward transformation which
is similar to the elemental transformation described in section 4.1.5 except that
we now want to project a function into a C° continuous global expansion space.
To recall the notation introduced in section 4.1.5, where the superscript e now
refers to the element number, we have:

@® Vector of length NV, containing the expansion coefficients
corresponding to the order of the basis matrix B.
u®  Vector of length Ng containing the function u(&1,&2)

evaluated at the quadrature points.
B® Ng x N,, basis matrix whose columns contain

the basis ¢pq(£1,&2) evaluated at the quadrature points.
W€ Ng x Ng diagonal weight matrix containing

the quadrature weights multiplied by the Jacobian

at the quadrature points.

For a nodal non-tensorial basis the vector ©° can also be interpreted as the
solution at the nodal points of the Lagrange expansion. In section 4.2.1 we also
introduced the notation for global systems:

Ug Vector of length Ny, containing the global expansion coefficients.
¢ Vector of length N.,; which is the concatenation of the local
expansion coefficients @° over all N,; elements.
uy, u® N - Ng vector which is the concatenation of the local
vectors u€ over all N; elements
A Neor X Ngop permutation matrix which constructs
the local vector u; from the global vector 4.
( AT represents the global assembly process.)

()
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In the above u;, has been introduced as an analogous vector to 4;, and contains
the function evaluation at the quadrature points over all elements. We also note
that

Nel
Neof = ZNme
e=1

where N,,° is the number of expansion modes in the element e. Typically this is
constant in which case Neoy = Nej - Ny,

We recall that to determine 4° given a vector u® we performed a discrete ele-
mental forward transformation which involved the solution of the matrix system

Me°a® = (B)"W°Ba° = (B®)TWeu*, (4.87)

where M° is the elemental mass matrix. We now want to set up an analogous
system to determine the solution for the global vector .

We can represent the elemental forward transformation over all elements in
terms of a global matrix process by assembling diagonal matrices of the form:

M' 0 O 0
0 M? 0 0

M° = .
0 0 . 0
0 0 0 MM
(BHTw! 0 0 0
(BTW 0 (BHTW? 0 0
— 0 0 : 0
0 0 0 (BNH)Twhe

In constructing the above matrix systems we have adopted the notation that an
underlined matrix M¢ denotes the local matrices M*, M?, ... as block diagonal
entries to a larger matrix system. This is equivalent to the concatenation of u®
and 4° into u; = u®, 4; = 4°, respectively. The matrix system

M€ @, = (B®)TW* u (4.88)
represents the local forward transformation over all V¢; elements and is an equiv-
alent statement to equation (4.87). This system is invertible since the local sys-

tems are decoupled and invertible but there is no guarantee of continuity between
elements. Nevertheless, we know from section 4.2.1 that

u; = Adyg, (4.89)
which determines the local degrees of freedom from the global degrees of freedom.

Substituting equation (4.89) into (4.88) we have
M° Aa, = (B°)TW® u,. (4.90)

The effect of post-multiplying the matrix M® by A is to globally assemble the
rows of this matrix from their local contributions. The matrix M °.A is not square
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as the columns of this system have not been globally assembled. This may be
achieved by pre-multiplying the entire equation (4.90) by A’ to obtain the global
square system:

[ATMe A} 4, = AT(B)TW w, (4.91)

which may be solved to determine the global forward transformation. The matrix
in square brackets is the global mass matrix M, that is,

M =A"M° A.

Although we have set up a global system for the forward transformation using
the local matrix M€, an identical procedure follows for any local matrix system
such as the weak Laplacian system L° defined in section 4.1.3. Therefore, the
global weak Laplacian matrix L is

L=ATL® A

Finally, we note that global matrix systems such as (4.91) can only be di-
rectly assembled for relatively small problems (i.e., a low number of elements
of low polynomial order). The matrix formulation, however, provides insight
into understanding the important steps in constructing the global system. In
practice, for a large problem we recall that the explicit inner product operation
(B)TW* w; can be evaluated on an elemental level. If we use a tensorial basis
then the sum-factorisation technique discussed in section 4.1.6 can also be ap-
plied. This produces a vector, equal in length to the local degrees of freedom,
which may be assembled into the global form using a mapping array as shown by
the operation (4.82). Therefore, we see that the left-hand-side of equation (4.91)
can be efficiently evaluated using local elemental operations.

The idea of locally assembling the elemental matrices and then using the
global assembly operator can be equally well applied to generate the global
matrix system M from the local matrices M®. This system is of dimension
Naof X Ngof but is typically very sparse. Nevertheless, it is usually too large to
invert, or even factor directly. In the next section we see how we can reduce this
global matrix system into smaller components based on the natural decomposi-
tion of the spectral/hp element method.

4.2.3 Static Condensation/Substructuring

Although the following technique may be applied to a general non-symmetric
matrix system we shall restrict our attention to symmetric matrix systems which
typically arise in the Galerkin discretisation of symmetric operators.

We therefore assume that we have a system of the form:

Mz =A"M°‘Az = f, (4.92)

where x is a vector of global unknowns, typically the global vector of expansion
coefficients i,. M€ is a block diagonal matrix which may have been formed from
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Figure 4.18 Depending on the global numbering scheme the global matrix system has
a very distinctive structure as shown here. The boundary-boundary matrix is usually
banded; the boundary-interior matrix can be constructed from the sparse local bound-
ary-interior matrices; and the interior-interior matrix consists of smaller uncoupled
matrices.

either the local mass or Laplacian matrices or indeed a combination of the two.
The matrix M is typically very sparse although it may have a full bandwidth. It
is therefore very inefficient, and potentially impossible, to store the full matrix
so that it may be directly inverted. A far more efficient approach is to use the
structure of the spectral /hp element discretisation which is the motivation behind
static condensation or substructuring.

Each of the elemental matrices M ¢ can be split into components containing
boundary and interior contributions, that is,

MS M
MF° =
(M)" M

where M represents the components of M€ resulting from boundary-boundary
mode interactions, M¢ represents the components of M “ resulting from coupling
between the boundary-interior modes and M represents the components of M *
resulting from interior-interior mode interactions.

As mentioned previously, if we know the value of @ we can perform the
matrix-vector operation A” M€ Az far more efficiently by considering separately
the local operations represented by the A and M matrices. This is one way of
solving the system iteratively. However, if we need to directly invert the matrix
AT M® A we cannot perform each operation independently.

We recall that the assembly process, denoted by AT, may be be viewed as a
mapping and partial summation process where we are free to specify the order
in which the global system is chosen. Previously, we have stated that the global
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system is ordered so that the global boundary degrees of freedom (that is, those
constructed from the local boundary modes) are listed first, followed by the global
interior degrees of freedom (that is, those constructed from the interior modes of
the elemental construction). In addition, the global interior degrees of freedom
were numbered consecutively. This ordering is important to make maximum use
of the structure of the discretisation in the static condensation process. If we
adopt this ordering, the global system has the form shown in figure 4.18.

In this figure the matrix M corresponds to the global assembly of the el-
emental boundary-boundary mode interaction from M and similarly M., M;
correspond to the global assembly of the elemental boundary-interior coupling
and interior-interior systems M ¢, M7. A notable feature of the global system is
that the global boundary-boundary, M, matrix is sparse and may be reordered
to reduce the bandwidth using, for example, a Reverse Cuthill McKee algorithm
[118], or re-factored in a multi-level Schur Complement solver as discussed in sec-
tion 4.2.3.1. The global boundary-interior coupling matrix, M ., is very sparse
but as it only operates on known vectors we only need to store the local ma-
trices M¢. Finally, the natural form of M is a block diagonal matrix which is
very inexpensive to evaluate since each block may be inverted individually. It is
the structure of M ; which makes the static condensation technique so effective.
This arises from the fact that the interior modes are non-overlapping and are
therefore orthogonal at an elemental level.

Now, if we distinguish between the boundary and interior components of x
and f using xp, x; and f,, f;, respectively, that is,

<[z ol

then equation (4.92) can be written in its constituent parts as:

My M o] [0, (49)

To solve this system we perform a block elimination by pre-multiplying this
system by the matrix

I-M.M;!
0 I ’

to arrive at:

M, - MM;'M!I 0 |[xy] [f, —M.M;'f,
M M| |[=]| £ '

The equation for the boundary unknowns is therefore:

(4.94)

(My — MM M)y = f, — MM f

Once xp, is known we can determine @; from the second row of equation (4.94)
since
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xi=M;'f, — M;'M"x,. (4.95)

The solution of equation (4.92) has been split into three operations: The first is

to evaluate and invert [M p— MM, ‘m CT] which is also known as the Schur

complement. The second is to evaluate M, ! and the final operation is the eval-
uation of M, M; ! = {M;lMCT}T.

The second and third operations can both be performed at a local elemental

level. Since M; is made up of block diagonals of the local matrices M? (i.e.,
M; = M) the inverse of M is

Myt =[] =

K2

which is still a block diagonal matrix that can be evaluated locally within every
element. The products M.M; ' f, and M;*MZXx;, can also treated as local
operations because they only involve the matrix-vector products of a known
vector (that is, f; and xp). To illustrate this operation in its matrix form we
define the matrix A, which is the boundary version of A and is equivalent to
the bmaple][i] operation discussed in section 4.2.1. The operation A, therefore
scatters the global boundary degrees of freedom to the local boundary degrees
of freedom that is,

= A,z
Nel
where xf contains the components of x; in element e. Similarly, the operation

.AbT assembles the global boundary degrees of freedom from the local boundary
degrees of freedom. The boundary-interior matrix M . can now be written as

M. = A, M;
and so the products M .M; ' f, and M; ' M’ x; become
McMi_lfi = -AbT%Z [Me]ilfi

%

M "Mz, = M M Ayay.

As both [M f]_l and M are essentially local matrices, these products can be
evaluated on an elemental level with respect to a vector which is either globally
scattered, as represented by Ay, or globally assembled, as represented by AbT.
The boundary scatter and assembly operation also illustrates how to construct
the boundary-boundary system since

M, = Al M, A,.
Therefore, the Schur complement system may be written as:

My — M M;'MT = ATMA, — AT M M5 (M9)" A4,
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= AT | Mp - MM MY)" | A

which shows that the global Schur complement system may be generated from
the local elemental Schur complement system M¢ — MM~ (M¢S)T. We now
appreciate that global assembly is only necessary for the boundary system when
using static condensation. Once the boundary solution is known, the solution for
the interior elemental modes given by equation (4.95) can be performed at an
elemental level. In this formulation, we have assumed that all the global boundary
conditions are unknown values since the Schur complement matrix is of size Ny.
However, in general we have some known Dirichlet boundary conditions which
can be dealt with by numbering the global system so that they are ordered after
the unknown degrees of freedom. We then use the appropriate sub-matrix of
M; — M [M;|"*(M.)" as shown in section 4.2.4.

Since the majority of the storage requirement in this technique is used in
the global Schur complement system, an alternative approach is to solve this
system iteratively where only storage for the local Schur complements My —
ME[MS]~H(ME)T is required. The Schur complement system is also better con-
ditioned than the complete system which also makes this approach more attrac-
tive (see chapter 5).

As a final point we note that storage savings can also be made when evaluat-
ing the Laplacian and Mass matrix systems by noting that the matrices (M§)~?
and MS(M$)~! are similar for straight-sided elements of the same size and ori-
entation. However, to exploit this feature, some degree of structure in the mesh
is required.

4.2.3.1 Multi-Level Static Condensation

The motivation behind using static condensation was the natural decoupling of
the interior degrees of freedom within each element leading to a global system
which contained a block diagonal sub-matrix. This decoupling can be mathemat-
ically attributed to the fact that the interior degrees of freedom in one element
are orthogonal to the interior degrees of freedom of another simply because these
modes are non-overlapping. To take advantage of this block diagonal sub-matrix
we have to construct the Schur complement system M, — MS[M§]|~Y(ME)T for
the boundary degrees of freedom which may be evaluated locally.

The effect of constructing each of the local Schur complement matrices M ;—
MM =Y (ME)T is to othogonalise the boundary modes from the interior
modes. However, the inverse matrix [M¢]~! is typically full, which means that
the boundary modes become tightly coupled. It is this coupling which dictates
the bandwidth of the globally assembled Schur complement system. To compute
the bandwidth we simply need to find the maximum difference between the global
numbering of the boundary modes within every local element. Even though the
boundary modes are coupled to all other boundary modes within the element
and the boundary modes of neighbouring elements, they are not coupled with
the boundary modes within non-neighbouring elements. Therefore, an appropri-
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@ = 7 (D)

Figure 4.19 The boundary degrees of freedom, on the mesh shown in plot (a), are
ordered so that the boundary modes indicated by O are first, followed by the boundary
modes indicated by o within each quadrant. Using this ordering the resulting Schur
complement matrix has a block diagonal sub-matrix as shown in figure (b).

ate numbering of the boundary system will lead to a Schur complement matrix
which also contains a sub-matrix that is block diagonal and so the static con-
densation technique can be reapplied. This technique has been more commonly
used in the structural mechanics field and is also known as substructuring [440].

To illustrate this ordering we consider the triangular mesh shown in figure
4.19(a) using N, = 32 elements. The construction of the global Schur comple-
ment M§ —MS[MS]~1(MS)T requires us to globally number all of the boundary
degrees of freedom as indicated by the open circles (o) and squares (O). We have
not included the boundary of the domain as we assume that we are applying
Dirichlet boundaries and so these values are not part of our Galerkin matrix
system. If we order the numbering of the elemental boundary degrees of free-
dom so that the vertex and edge modes indicated by the open circles (o) are
first followed by the vertex and edge modes within each quadrant, indicated by
the open squares (O0), then the resulting Schur complement system of the mass
matrix for a polynomial expansion of p = 6 is shown in figure 4.19(b). The block
diagonal structure of the matrix is due to the fact that even after constructing
the elemental Schur complement systems the boundary degrees of freedom in
each quadrant do not overlap and so are orthogonal.

We can now construct another Schur complement system to solve for the
(o) degrees of freedom and decoupling each quadrant of (O) degrees of freedom.
This technique can be repeated providing that there is more than one region
of non-overlapping data. The approach is clearly independent of the elemental
shape and may equally well be applied to quadrilateral regions or any hybrid
shape in three dimensions.
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4.2.4 Global Boundary System Numbering and Ordering to Enforce Dirichlet
Boundary Conditions

We have previously discussed in section 4.2.1 the issues relating a local elemental
numbering scheme to a global numbering taking account of inter-element con-
nectivity. The aim of section 4.2.1 was to assemble the local expansions into a
global C° continuous expansion where a global numbering scheme map|e][i] or
bmaple][i] was assumed to be known. In this section we outline the generation
of this numbering scheme and then demonstrate how the numbering scheme can
be re-ordered to enforce Dirichlet boundary conditions.

Heuristically a global numbering scheme for the boundary can be generated
in the following manner. We assume as a starting point the output of a finite el-
ement or volume mesh generator where the global Cartesian coordinates of each
vertex are known. We start our numbering scheme by assigning a unique number
to every unique vertex defined through its global coordinates. In the spectral/hp
element method we also require a global numbering of all boundary degrees of
freedom including all edge modes and the face modes in three-dimensions. Us-
ing the global vertex coordinates every unique edge can be identified using the
global coordinates of the vertices at the ends of each edge. The global number-
ing of the degrees of freedom along each global edge can then be defined. An
example of this type of global numbering is shown in figure 4.20(a) where we
note that the global vertices are numbered first followed by the global edges
according to the element numbering (given in figure 4.20(c)). A similar strategy
can also be followed to number global degrees of freedom associated with every
face. If a full numbering scheme is required the interior degrees of freedom can
finally be independently numbered by looping over all elements. This type of
global numbering is unlikely to lead to an ordering which will give a minimal
bandwidth for global matrix problems. However, once one global numbering has
been obtained it is then possible to use standard algorithms and packages to
reorder the scheme to minimise the difference in numbers between coupled de-
grees of freedom in order to reduce bandwidth or maximise matrix infill [265,
118].

It may also be necessary to enforce Dirichlet boundary conditions. In this
case it is advantageous to have a global numbering scheme which orders the
unknown boundary degrees of freedom first followed by the known degrees of
freedom which lie on Dirichlet boundaries.

A procedure to perform the boundary reordering adopted by Henderson
(Ph.D. thesis) is illustrated in figure 4.20. In this example we consider a mesh of
four triangular elements and start by assuming that we have obtained a global
numbering scheme as shown in figure 4.20(a) for a P = 3 polynomial expansion
within each element. From the numbering in figure 4.20(a) we can define elemen-
tal arrays bmap[e][:] which relates all the element boundary degrees of freedom
to the global numbering scheme. This type of array was used in section 4.2.1 to
define the global assembly operation. In the example of figure 4.20 if we assume
that the local vertex boundary degrees of freedom are ordered first followed by
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Figure 4.20 Given a global numbering scheme as shown in (a), we can re-order the
system so that known degrees of freedom on a Dirichlet boundary are listed after the
unknown degrees of freedom as shown in (d). A reordering strategy using the elemental
information, as given in (c), is to generate a global mask array as shown in (b).

the edge degrees of freedom in each element, as shown in figure 4.20(c) then the
array bmaple][i] can be defined as (1 < i < 9)

bmapl[1][i] = [1,2,3,7,8,9,10,11,12],
bmap|2][i] = [2,4,3,13,14,15,16,10,9],
bmap[3][i] = [3,4,5,16,15,21,22, 23, 24],
bmap[4][i] = [2,6,4,17,18,19, 20, 14, 13).

If we assume that the boundary is of a Dirichlet type then we would like
to place all the global numbers along this boundary at the end of a new global
numbering system. Although this would appear to be straightforward in the
example, devising an automatic implementation using elemental information is
a bit more involved and a suggested implementation is provided below.

From the point of view of implementation, a convenient way of specifying
boundary conditions, in two-dimensions, is to identify which local edges of the
elements touch the given domain Dirichlet boundary. It is then possible to iden-
tify the degrees of freedom along these edges which have Dirichlet values and
associate with them an elemental mask array ‘mask[e][i]’, as shown in figure
4.20(b). This mask array is set so that all Dirichlet degrees of freedom have en-
tries set to “0” otherwise the entry is set to “1.” If we are imposing Dirichlet
boundary conditions using only edges information in two—dimensions (or faces
information in three-dimensions) care must be taken to ensure that all local con-
tributions to the mask array in elements that only touch the Dirichlet boundary

Implementation
note: Manipulation
of the global numbering
scheme wusing elemen-
tal mapping arrays.
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through a vertex are set. For example, setting the values of mask[e][i] in elements
with edges that touch the Dirichlet boundary (i.e., e = 1,3) in figure 4.20 will
not enforce the single vertex touching the boundary in element 2 (highlighted by
a box) to be zero. To ensure the mask array of this vertex point is set correctly
we can use a global assembly and scatter operation using the bmaple][i] array
similar to that discussed in section 4.2.1.1. In this case, we first initialise a global
array, Gmask|[i] to have a value of 1 on all entries and then perform the assembly:

Doe=1,N,
Do i = 0,mp[e] — 1
Gmask[bmaple][i]] = Gmask[bmaple][i]] x mask[e]]
continue
continue.

The global array Gmask[i] will now contain entries of 1 only when all vertex
points have a local mask which is 1. The local mask array can then be recovered
through scatter operation

Doe=1,Ngy
Do i = 0,mp[e] — 1
mask|e][i] = Gmask[bmap|e][7]]
continue
continue

and mask|e][i] will then correspond to figure 4.20(b).

Finally, using the local mask array we can reorder the global numbering sys-
tem using elemental information and another global array. We now initialise a
global array Gbmap[i] to zero and fill this array using the mask[e][i] array and
applying the following logic:

Let ny =ng = 1
Do e = 1, Nel
Do i = 0,nple] — 1
if (Gbmap[bmaple][i]] = 0)
if (maskle][:] = 1)
Gbmap[bmaple][i]] = n1
ni=n1+1
else
Gbmap[bmapl[e][i]] = na + Npsiw
Ng = No + 1
continue
continue

where Ny, is the number of unknown boundary degrees of freedom which typi-
cally has to be obtained as part of the loop and then added afterwards. The final
form of the reordered global numbering scheme can be recovered into bmap|e][i]
using a scatter operation of the form
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Do e = 1, Nel
Do i = 0,mp[e] — 1
bmaple][i]] = Gbmap[bmapl[e][i]]
continue
continue.

The array bmaple][i] now corresponds to the ordering in figure 4.20(d). If we
make a global assembly with the new bmaple|[i] we obtain a global ordering ar-
ray of the form indicated in the right-hand-side of figure 4.20 where the unknown
degrees of freedom are listed first followed by the known Dirichlet values.

4.2.4.1 Discrete Lifting of the Known Solution

We recall that in a standard Galerkin implementation Dirichlet boundary con-
ditions can be enforced by “lifting” a known solution satisfying these boundary
conditions, see section 2.2.1.3. Performing this operation leaves us with a ho-
mogeneous Dirichlet boundary problem where the same test and trial space can
be applied to the problem. The separation of the global solution arrary 4 into
known (i.e., Dirichlet) and unknown boundary degrees of freedom provides a way
of obtaining a discrete lifted boundary solution. If we denote the homogeneous
unknown solution by u*(z) and the known Dirichlet boundary conditions by

uP(z) we can decompose the solution u°(x) into the form
N™ Ndbof
u(@) =u" (@) +uP (@) =) el ei@)+ Y a7 e,(w),
J J=NM41

where we recall that @, (z) is the global expansion basis and N is defined as the
number of global homogeneous boundary degrees of freedom (N** = 17 in the
example of figure 4.20). We note that the important component of the definition
is that the homogeneous solution has zero contribution from modes which are
non-zero on Dirichlet boundaries. The homogeneous solution also contains the
interior degrees of freedom which are defined to be zero on the boundaries.
For the lifted solution the values of 12]77 can be determined using a boundary
transformation as discussed in section 4.3.2. In general, the lifted solution u? (z)
may also contain any predefined contribution associated with any homogeneous
mode. This is typically possible for unsteady problems with steady boundary
conditions where the previous solution that satisfies boundary conditions can be
used as the lifted solution of the next time step.

4.2.4.2  Boundary Matriz Manipulation

As a final example of the application of both the boundary numbering system
and the lifted solution expressed in terms of expansion coefficients we consider
the matrix solution shown in figure 4.21. If we wish to directly invert a matrix
problem M arising from our spectral/hp element formulation we can apply the
static condensation technique discussed in section 4.2.3. By construction this
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Figure 4.21 Sorting the boundary vector @ into an unknown component @ and a
known (lifted) component @” the full boundary matrix system M . can be viewed as
sub-matrices M?gf, M?f? Mlsjg'f7 and Mfc? as shown in plot (a). This can be solved
by removing matrices M 5f, and ML with the identity matrix as shown in (b) or

equivalently by taking the product M | CD @P to the right-hand side as shown in plot

().

technique decouples the interior degrees of freedom, and for a symmetric matrix
requires the inversion of a global boundary matrix of the form M, = M, —
MCMflMZ where My, M; and M . are submatrices of M. For the standard
Galerkin formulation M . can be constructed from its elemental contributions
M?¢ _ and by applying the global assembly technique over the boundary degrees

sC

of freedom, such that M., = .AbTMZC.Ab as discussed in section 4.2.1.1. We
note, however, that the matrix M, constructed in this manner contains both
the Dirichlet and unknown degrees of freedom. Strictly speaking, the matrix
does not correspond to the Galerkin problem since it contains test (or weight)
functions which are now zero on Dirichlet boundary conditions. The application
of a boundary numbering scheme where known Dirichlet values are listed after
the unknown boundary degrees of freedom allows us to manipulate the resulting
matrix into the appropriate form.

This process is highlighted in figure 4.21. The full boundary matrix M ., =
Al M < As is indicated in figure 4.21(a) where the numbering system allows us
to view the matrix as a series of sub-matrices M ?CH, M ?CD , M ECH, M SDCD corre-
sponding to the homogeneous and Dirichlet solutions @' and a”, respectively.
The highlighted matrices M ECH and M SDCD are not part of the Galerkin prob-
lem since they involve trial (or weight) functions which are not zero at Dirichlet
boundary conditions. To enforce the Dirichlet boundary conditions we therefore
have two choices. As shown in figure 4.21(b) we can replace the matrices M fCH

and M ?CD with a zero block and the identity matrix I on the diagonal entries

as well as copy the vector a” to the right-hand-side. An equivalent technique is
often applied in finite element methods where this approach is favoured since it
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is not necessary to reorder the degrees of freedom as a row containing a Dirichlet
degree of freedom can be deleted and a unit value placed on the diagonal. There
are, however, two potential drawbacks. The first is that the matrix is now not
symmetric even if the original matrix M .. was symmetric. The second is that
the conditioning of the system can be significantly influenced by the introduction
of diagonal terms if all other entries of the system are very small.

Alternatively, we can manipulate the matrix system as shown in figure 4.21(c).
This system is the same as shown in figure 4.21(a) and (b) but the known Dirich-
let boundary conditions @7 have now been taken to the right-hand-side of the
system. In this manipulation we have maintained the symmetry of the system
M Z(CH by essentially lifting the known solution out of the problem. To apply
this technique, however, a boundary numbering system is clearly necessary to
construct a compact form of the matrix M ?CH

We close by noting that a more general lifted solution, u”, can be used in-
volving all the boundary degrees of freedom. In this case a matrix contribution
involving M Z(CH will appear on the right-hand-side of the problem. We remark,
however, that right-hand-side matrix—vector products do not require the assem-
bly of global matrix systems since they can (and should) be evaluated at an
elemental level and then assembled.

4.3 Pre- and Post-Processing Issues

In section 4.1 we discussed the key elemental operations used in a spectral/hp
element solver independent of the formulation, namely integration, differentiation
and basic elemental mappings. We then applied these operations in section 4.2
within the context of global C° expansion for a classical Galerkin formulation by
introducing the concept of global assembly. Although these two sections represent
the operations behind the algorithms, practical implementation also requires
various pre- and post-processing techniques, the discussion of which will conclude
this chapter.

In this section we will discuss issues relevant to mesh generation and bound-
ary representation as well as particle tracking within a spectral/hp element com-
putational setting. The first two topics, boundary condition discretisation and
mesh generation, are important issues of any spectral/hp element formulation.
The last topic, particle tracking, is a useful diagnostic tool in fluid mechanics
as well as a key component in the strong semi-Lagrangian formulation, which is
discussed in chapters 6 and 8.

4.3.1 Boundary Condition Discretisation

Until now we have assumed that all boundary conditions have been specified
in terms of the expansion coefficients (whether modal or nodal), however, for
a general implementation this is not typically the case. In section 4.1.3 we dis-
cussed how curved elements, which are typically due to a curved boundary of
the solution domain, can be represented in terms of an isoparametric mapping
if the mapping of the edges, or faces in three-dimensions, are provided. In both
the case of the Dirichlet boundary condition and the curved boundary mapping
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we need to project the known function onto a discrete expansion basis which is
also globablly C° continuous.

In this section we will discuss how to generate C° approximations over the
whole surface using local elemental information. Although we will focus on the
Dirichlet boundary condition, an analagous approach can be used in the case of
a curved surface mapping to define the elemental transformation.

4.3.2 Elemental Boundary Transformation

Given a Dirichlet boundary condition gp(x) where x € 92 we need a consistent
method of approximating the boundary condition in terms of our discrete expan-
sion. In two-dimensions the boundary of the domain is simply a one-dimensional
segment but in three-dimensions, depending on our spatial discretisation, the
surface becomes a tessellation of triangles or rectangles or even a combination
of both shapes.

In general, we require that our discrete boundary approximation remains at
least C° continuous. This condition could be ensured by formulating an approx-
imation over the whole Dirichlet boundary. In two-dimensions this would only
involve a one-dimensional problem with multiple elemental segments. In a three-
dimensional problem, however, this implies constructing a full two-dimensional
system. It can be appreciated that for a general mesh this could become exces-
sively complicated. A more desirable method is to perform a local projection
within each element. However, if we performed an elemental Galerkin (L?) pro-
jection of gp onto the boundary modes within each individual element we could
not, in general, guarantee that our approximation would be C° continuous over
the whole boundary.

We recall that elemental projections or forward transformations were previ-
ously discussed in section 4.1.5.3. We note that the use of a collocation projection
onto a set of nodal points which include the boundary of the segment or face sat-
isfied our requirement of a C° continuous approximation. An appropriate choice
of collocation points is therefore the Gauss-Lobatto-Legendre quadrature points
in a segment or rectangular region and any choice of the nodal non-tensorial dis-
tribution discussed in section 3.3 on a triangular face. As we have seen previously,
these points also have favourable interpolation properties from a Lebesgue con-
stant point of view. Nevertheless, if a local Galerkin projection is desired we need
to modify the Galerkin projection to ensure C° continuity. In two—dimensions
this modified projection can be viewed as a collocation projection at the vertices
followed by an L? projection on all edges with a final interior L? projection of
the reamining function.

To illustrate the modified Galerkin projection we consider the case shown in
figure 4.22. We wish to project a known boundary condition gp onto a boundary
of element ‘e’ lying on along 9. The discrete solution u®(z;,r2) along the edge
can be written as

P
ul (w1, w2) = 06,05, (€1, —1) =Y _ S5 (6, —1),
prq p=0
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Figure 4.22 Intersection of the boundary of the e-th element with the domain bound-
ary 0. The orientation of the local coordinates is indicated by the (£1,&2) system.

where the reduction of the summation is due to the boundary interior decompo-
sition of the basis and 1 = x$(&1,—1), 22 = x5(&1, —1). If our expansion is of a
modified modal type then ¢p0(&1, —1) = 95 (§1)Y5 (1) = ¥5(&1). Alternatively,
if the expansion is of a nodal type then ¢,0(&1, —1) = hp(&1).

For the modal expansion case we would like to determine ag, such that

Py
D gt (€1) ~ gn (X5 (€1, —1)).
p=0

We can use the vertex-edge decomposition of the boundary modes to ensure that
our approximation remains C° continuous over all elements. The vertex functions
have, by definition, a unit value at the ends of an edge and all other boundary
modes are zero at this point. C° continuity is, therefore, ensured if we set the
vertex coefficient to

[Recall that p = 0 and p = P refer to the vertex modes of the edge expansions
(&) and hy(£)]. We also note that x§(—1, —1), x§(1, —1) are simply the values of
the vertex location (1, 22). The remaining unknown coefficients at the boundary
may now be written as

P—1
> ™€) = gp(xi(&r, —1) — WS (1) — iy 0¥, (61).
p=1
Since the remaining modes do not contribute to the end-points we can solve

for the remaining unknowns 4y, (1 < p < Pp) without destroying the C° conti-
nuity. These coefficients can be found by setting up the local Galerkin projection:
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Find ﬁgo such that

Pi—1
(i Z ﬁ§0¢p) = (¢, 9D — UG5 — ﬂP107/’731)a

p=1

foralli 0<i< P —1).

Clearly, this involves constructing and inverting the one-dimensional mass matrix
M'P[i][§] = (¢i(€1),0j(€1)) for (1 < 4,5 < Pyp). This Galerkin approximation
minimises the error in the L2 norm between the exact boundary condition and the
edge approximation in the interior of the region (for a more detailed analysis, see
7.4 and also Babuska et al. [25]). In a discrete implementation of the projection
we will be performing the collocation projection onto the quadrature points.
However, if this collocation projection is of a sufficiently high order (i.e., the
number of quadrature points is large enough) then the error in the collocation
projection will be smaller than that of the L? projection. A directly analogous
procedure can be followed for triangular regions as the boundary modes of the
modified expansion are identical (see section 3.2.3.3). Although we can also use
the same technique when using the spectral element nodal expansion hp(§1), we
recall that if we evaluate the one-dimensional mass matrix M P using a discrete
inner product (u,v)s of the same order as hp(&1) then the mass matrix is diagonal
and we are essentially performing a collocation projection, see sections 2.3.4.2
and 4.1.5.3. In this case the formulation is, therefore, identical to evaluating the
boundary conditions at the nodal points.

For the three-dimensional case we follow an analogous procedure using three
steps:

1. Set the expansion coefficients of the vertex modes to the value of gp eval-
uated at the vertex points.

2. Subtract the vertex mode approximation from gp and evaluate the coeffi-
cients of the edge modes using a local one-dimensional Galerkin projection
within the interior of the edge.

3. Subtract the vertex and edge mode approximation from gp and determine
the face modes using a local two-dimensional Galerkin projection within
the interior of the face.

The three-dimensional modified transformation for a triangular face is rep-
resented diagrammatically in figure 4.23. Using the collocation property of the
vertex modes, we set the coefficient of the vertex mode to the physical value
of the function evaluated at the vertex as indicated in figure 4.23(a). Assuming
that the boundary function is continuous, this ensures continuity of the vertex
functions over the entire boundary. To calculate the remaining expansion coeffi-
cients we subtract the vertex mode approximation from the boundary function
as indicated in figure 4.23(b). We then locally project each of the edge functions
onto the edge modes using a one-dimensional Galerkin approximation. As we
have subtracted the vertex contribution, the function is zero at the end-points
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Figure 4.23 Diagrammatic representation of three-dimensional modified boundary
transformation within a triangular face. Given an initial function as shown in figure
(a) the vertex coefficients are set to the value of the function at the vertices. This
approximation is then subtracted as shown in (b) permitting the edge contributions
to be locally projected. Finally, the edge approximation is also subtracted and the
remaining function is projected onto the face modes as indicated in (c).

of an edge which is consistent with the shape of the edge modes. A possible
source of error in evaluating the edge modes between two elements is in the
numerical integration. However, if we use a symmetric quadrature rule, such as
Gauss-Lobatto-Legendre quadrature, this error will be identical for any smooth
function providing the same quadrature order is used and so we maintain C°
continuity. Finally, we subtract the edge and vertex modes approximation from
the boundary function and project this onto the face modes as shown in figure
4.23(c). This function will not, in general, be exactly zero along all edges since
there is an error associated with the approximation of the edge functions. How-
ever, for a smooth boundary function the error will be consistent with the overall
approximation.

4.3.3 Mesh Generation for Spectral/hp Element Discretisation

In this section we discuss issues concerning the generation of high-order or curvi-
linear meshes for spectral/hp element discretisations of complex geometries. The
extension of standard mesh generation technology for spectral/hp element al-
gorithms is a non-trivial exercise. Complications arise due to the conflicting
requirements of generating coarse meshes for high-order polynomial approxima-
tions whilst maintaining good elemental properties in regions of high curvature.
A potential problem is illustrated in figure 4.24 that shows the occurrence of in-
valid curvilinear spectral/hp elements in reconstructing an arterial bypass graft
[435]. The straight-sided element discretisation does not include any invalid ele-
ments.

A necessary starting point to discussing the issues involved in mesh generation
is to define what makes the elements invalid. In the case shown in figure 4.24 the
elements are invalid because the mapping between the physical region x € Q¢
and the standard region & € Q) is not bijective. This is highlighted by the fact
that the Jacobian of the mapping z; = x;(&1,&2,&3) for i = 1,2, 3 is singular. A
valid element can therefore be defined as an element where the Jacobian of the
mapping is strictly positive, i.e.
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Figure 4.24 Generation of high-order curvilinear elements from coarse mesh. The
deformation of straight sided element can lead to invalid elements being generated
with singular mappings.
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From a purely implementation point of view, differentiation in an arbitrary ele-
ment, as discussed in section 4.1.3.4, involves derivatives with respect to the local
Cartesian coordinates divided by the Jacobian. A zero Jacobian therefore implies
an infinite derivative, making the algorithm and element description invalid.

In general, we would like our mesh generation algorithm to take into account
the possibility of generating invalid elements during the mesh construction pro-
cess. However, such an approach is typically too complicated since it requires
an algorithm to take into account all possible invalid generation scenarios. An
alternative more practical strategy is, therefore, to initially design a coarse mesh
of straight-sided elements using as much information of the surface topology as
possible. Subsequently the coarse straight-sided mesh is deformed to conform
to the curved boundary representation of the solution domain. Whilst a mesh
of straight-sided elements may consist of purely valid elements, the deformation
of these elements into curvilinear approximations can generate invalid elements
as shown in figure 4.24. Therefore, we need to employ strategies to minimise
element the generation of invalid elements such as curvature driven mesh refine-
ment, interior edge and face deformation, and use of hybrid shape expansions.

In section 4.3.4 we outline the basic concepts behind the geometry repre-
sentation and mesh generation techniques for constructing a coarse mesh of
straight-sided elements with vertices that conform to the geometry boundary.
In section 4.3.5 we then discuss how to deform the meshes by constructing lo-
cal mappings to ensure boundary conforming curvilinear elements in two- and
three—dimensions.
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Figure 4.25 Illustration of the “top-down” boundary representation (B-Rep) of a
domain for use in a “bottom-up” mesh generation strategy (Courtesy of J. Peird)

4.3.4 Global Coarse Meshing

To understand the problem of curvilinear mesh generation we must first outline
standard mesh generation techniques. We start by assuming that the geometry
of the computational domain is defined through a top-down boundary repre-
sentation. We will implicitly assume that the “real” surface can adequately be
represented by this boundary representation which we subsequently treat as our
exact definition of the solution domain boundary. As shown in figure 4.25 the
concept of a top-down representation arises from the view point that a volume
is enclosed by a series of faces, which are themselves enclosed by a set of curves,
which in turn are enclosed between two points. To ensure a complete boundary
description each of these surfaces may only intersect one another along curves
and curves may only intersect one another at boundary points. Typically, these
curves and surfaces are described using standard techniques of computer aided
design (CAD).

Many standard mesh generation techniques, such as advancing front, struc-
tured meshing and Delaunay [464], follow a “bottom-up” construction procedure.
We will not discuss the specific details of the different types of mesh generation
but will simply outline the broad common strategy that all these techniques fol-
low. For details on each of the different types of mesh generation techniques we
point the reader to [464] and the references therein. As illustrated in figure 4.25,
the “bottom-up” approach initially discretises the edges of the boundary repre-
sentation into discrete segments which conform to the points of the boundary
representation. Every surface of the boundary representation is then bounded
by a set of discretized edges and so the next step of the generation is to develop
a surface discretisation in terms of triangular or quadrilateral elements. Finally,
the generation process is completed by constructing elements in the interior of
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the domain which comply to the face and edge definitions constructed in the pre-
vious steps. This way it is possible to construct a discretisation which conforms
to the boundary requirements. To ensure a similar condition for curvilinear el-
ements using spectral/hp element expansion we will follow a similar bottom-up
strategy.

We note that different types of interior/volume discretisation are also possi-
ble. An example is shown in figure 4.24 where a boundary layer mesh has been
employed that produces a layer of high aspect ratio elements in a structured
fashion adjacent to the geometry boundary. This type of discretisation can be
very useful in viscous flows where boundary layers naturally occur as part of the
physical solution. In this context, we are using some a priori information about
the solution to dictate our meshing strategy. Although local refinement such as
the boundary layer meshing is useful from an approximation point of view, it
can also produce more invalid curvilinear elements.

4.3.5 High-Order Mesh Generation

We are now faced with the task of generating a curvilinear and boundary con-
forming mesh from a coarse mesh of straight elements. This coarse mesh contains
vertices which conform to the points, curves and faces of the boundary represen-
tation. The process of high-order mesh generation is to determine an elemental
boundary transformation, in a bottom-up fashion. Having defined the bound-
ary transformation, an elemental mapping from the standard region 2 can be
defined as discussed in section 4.1.3.2.

From our coarse mesh we know the location of the vertex points. The next
stage is, therefore, to ensure that the edges of our element in two- and three-
dimensions conform to the boundary representation as discussed in section 4.3.5.1.
Subsequently, we can then define edges on the interior of the domain in two—
dimensions as outlined in section 4.3.5.2. In three-dimensions, the interior edge
evaluation is similar to the problem of determining edges lying within a bound-
ary face. Finally, in three-dimensions we also need to determine the interior face
location. These three-dimensional construction issues are discussed in section
4.3.5.3.

4.3.5.1 Boundary Constrained Edges in Two—Dimensions

The mappings involved in the definition of an edge constrained to a boundary
segment are illustrated in figure 4.26. In general, we are seeking an elemen-
tal mapping x;(£1,&2) for ¢ = 1,2 which defines the transformation from the
boundary conforming element to the standard region Q4. To define x;(&1,&2),
however, we require the one-dimensional mapping Y2 (¢1) which transforms the
boundary conforming edge of the physical element to one side of the standard
region —1 < & < 1. This mapping combined with similar mapping for the other
edges would allow us to define x;(&1,&2), as discussed in section 4.1.3.2 (note
that x1P (&) was denoted as f;(£) in that section). To determine x 17 (&) we need
some information about the surface which is typically defined in terms of an-
other transformation g(u) = [g1(u), g2(u)]. For example, if the boundary edge is
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Figure 4.26 Mappings involved in the generation of a curvilinear element. The map-
ping xi(&1,&2) defines the element to standard region transformation. This transfor-
mation requires the definition of the edge mapping xi?” (&1). Normally, a parametric
mapping ¢;(u) will also exist which defines the geometry boundary.

a circle, the mapping can be defined as g1 (u) = Rcos(u), g2(u) = Rsin(u) where
u is the azimuthal angle and R is the circle radius. Alternatively g(u) might be
expressed as a spline representation in terms of the local coordinate u. Typically,
these geometrical definitions have been provided by the coarse mesh generator
and are often C'! continuous.

We next consider that our spectral/hp element approximation within an ele-
ment is a polynomial of order P. For a consistent approximation of the geometry
boundary we could also approximate the surface by a P-order polynomial ex-
pansion. Dey et al.[134, 132] argue that to maintain optimal convergence of a
P order spectral/hp approximation to each integral only a (P — 1) polynomial
order approximation of the boundary is required.

Two constraints which we must impose on our polynomial approximation of
P (€) is that the vertex points common to adjacent edges ensure continuity of
elements. To determine the mapping x!?(€) it would, therefore, seem reasonable
to apply a collocation approximation where the first two constraints are that the
vertex points, i.e.

1D(71) = T4, XlD(l) =B,

X
where x 4, g are the coordinates of the end-points. For a P-order polynomial ap-
proximation we are now free to choose (P — 1) conditions to define our mapping.
These points can be determined by defining (P — 1) nodal points in —1 < &; <1
and (P — 1) corresponding points along the curvilinear edge. This point is illus-
trated in figure 4.27 where we show the discretisation of the same edge illustrated
in figure 4.26. To define a P = 4 order Lagrange polynomial approximation
for x1P (&) we require 5 nodal points. The first two points, denoted by the
solid circles in figure 4.27, are provided by vertex locations. The three interior
points, denoted by open circles are to be determined. A reasonable choice for
these collocation points in the standard region —1 < ¢; < 1 are the the Gauss-
Lobatto-Legendre integration points due to their favourable Lebesgue properties
(see section 3.3.1). We are, therefore, left with the task of determining the nodal
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points, x;(£1) along the curved boundary. There are a few possible methods we
could apply.

An intuitive method of obtaining the surface collocation points is to initially
determine the local Gaussian quadrature points along the straight line segment
between the vertices. The desired collation points are then obtained by pushing
these mapped quadrature points in the surface normal direction onto the geome-
try boundary. This technique is illustrated in figure 4.27 (b). For a relatively well
behaved curved segment with curvature that does not vary significantly between
the vertices, this produces reasonably distributed points as shown in the same
figure. Here, the cross points on the straight line segment represent the Gauss-
Lobatto-Legendre points linearly mapped to the line A — B. These points are
then pushed onto the surface in the normal direction. Problems arise with this
technique when the curvature varies rapidly along the line segment. In this case
the “normal pushing” technique can produce a nodal distribution of points which
is highly irregular in spacing along the arc length of the curve as illustrated in
figure 4.27(c). A spacing along the arc length, which is significantly different from
the spacing in the standard region (for example the Gauss-Lobatto-Legendre in-
tegration points), will result in a highly non-linear mapping y?(&;). This can
cause the Jacobian of the mapping to be singular and make the element invalid,
thereby destroying the good convergence properties of the spectral/hp element
approximation. We are, therefore, motivated to consider an “optimal” transfor-
mation as one which minimises the distortion of the Jacobian of the mapping
X2 (&1), i = 1,2 as defined in section 4.1.4. This criterion implies that the best
mapping has a constant Jacobian, which is the case between a straight-sided
element and the standard region under a linear mapping. A constant Jacobian
mapping is also preferable in an approximation sense because a minimal quadra-
ture order is required to ensure optimal integration of a polynomial integrand.

An alternative method of choosing the nodal points is to select points in
the parametric space v which under the mapping g(u) fix the location of the
nodal points on the geometry surface. The selection of the parametric nodal
points uy depends on the form of the mapping x; = g(ug). An obvious initial
distribution is to use the same parametric spacing in the u-space as applied in
the &;-region. For many mappings this selection may be perfectly adequate and
even optimal. For example, when the surface is defined as a circle, i.e. g1(u) =
Rcos(u), g2(u) = Rsin(u) setting the collocation point in the u-space can be
shown to lead to a mapping x1”(£1) which has a constant Jacobian. However for
a more complex mapping g(u) this type of point selection can lead to a highly
distorted distribution of collocation points. In such a situation the mapping
X+ (&) can again become singular. A modification to this approach, proposed in
[435], is to define a minimisation procedure to determine the parametric discrete
points ug that minimise the Jacobian of the mapping x}”(&1). In this work the
definition of an optimal mapping was approximated as the linear spacing between
two collocation points & = g(uy) on the curved geometry to be the same as the
spacing between the nodal points in the standard region. It is then possible to
define a functional of the form
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Figure 4.27 (a) Defining the mapping, X}D(ﬁl), using a collocation projection between
the standard region, —1 < &; < 1, and the geometry boundary segment A — B. (b)
Ensuring the vertices at the end points provides two collocation points (solid circles)
however we are free to define other collocation/nodal points (open circles) using normal
pushing (as indicated in (b) and (c)) or throught the surface parameter u-space (as
shown in (a)).

g (uig1) — g(u)]?
T (ug, ..., u . 4.96
( E o (4.96)
where &, 1 =0, ..., P represent the Gauss-Lobatto-Legendre integration points.

The minimisation of the function J provides the spacing of points ug (1 < k <
P —1), which gives a near optimal spacing &, = g(uy) in the sense of minimising
the curve Jacobian. We note, however, that the nonlinearity of the mapping g(u)
makes this a non-linear optimisation problem.

Finally, we note that accounting for the surface curvature is an important
prerequisite when constructing curvilinear elements. Mesh generation techniques
exist (see Frey and George [165]) which take account of surface curvature as part
of the mesh refinement strategy, and such an approach clearly has benefits when
designing spectral/hp element meshes.

4.3.5.2 Internal Edges in Two-Dimensions

Having constructed a mapping for boundary conforming edges we require defi-
nition of the edge mappings for all other edges interior to the solution domain.
Since we know the vertex location of these internal edges from the coarse mesh
description, and in the absence of any other information, using a linear mapping
between the vertices for interior edges is the most obvious approach. Such an ap-
proach leads to the element shapes shown in figure 4.26 where only the bottom
edge is deformed.

Applying linear mappings for interior edges is attractive since it simplifies
the form of the elemental mapping of the interior elements which do not touch
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Figure 4.28 Edge deformation of a straight sided coarse mesh leading to invalid curvi-
linear meshes in regions of concave curvature relative to the element volume.

the solution domain boundary. This can be advantageous since the Jacobian
of integral interior elements will not be influenced by any surface curvature.
We note, however, that in cases where the structure of the solution is known
then interior elements with curved boundaries may be advantageous from an
approximation point of view. Nevertheless, a more important factor to consider
is if internal edge should be deformed to avoid the generation of invalid elements
after surface edge deformation. This point is illustrated in figure 4.28 where we
see the generation of a curvilinear mesh from a coarse mesh generation in a
flower type shape. Although this example is three-dimensional, the construction
of elements within the planar surface of the surface mesh is identical to the
generation of two-dimensional interior elements. Figure 4.28(a) shows a coarse
straight-sided mesh, where a boundary layer region has also been generated
adjacent to the surface boundary. All elements in this mesh are valid. If we
now deform the edges which touch the solution domain boundary we observe in
figure 4.28(b) that invalid elements are generated in regions where the surface is
concave with respect to the local element (i.e., the curved edge reduces the local
area of the straight sided element). In general, these problems occur when the
surface deformation is larger relative to the size of the element.

Invalid Element Detection

We are, therefore, faced with the problem of identifying invalid elements and
by suitable modification to make them valid. One approach for detection is to
numerically evaluate the Jacobian at a set of discrete points in the element and
to identify if there is a sign change or ensure that the Jacobian is larger than zero
by a suitable tolerance. Although such an approach cannot absolutely guarantee
the validity of the element since only a discrete set of points are evaluated, in
practice an inspection at quadrature points is normally sufficient. The approach
can however be numerically quite expensive. Luo et al. [313] have proposed to
use Bezier polynomials in their curvilinear meshing strategy. Bezier curves have
a number of attractive features including the property that the convex hull of
the control points contain the Bezier curve. In [313] they used this property and
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the fact that the derivatives and products of Bezier curves can also be expressed
as Bezier curves to determine the Jacobian as a Bezier form. It is then possible
to determine if the Jacobian is greater than zero by ensuring that the expansion
coefficients (control points) are greater than zero.

Eliminating Invalid Elements

Having identified the invalid elements, we are faced with the problem of de-
ciding how to correct the invalid element. This point was addressed in the work
of Dey et al. [132, 133] where they considered two approaches: edge swapping
and interior edge deformation. Edge swapping has previously been used in op-
timising meshes [307] but in the curvilinear context can be applied if the edge
swapping does not create any more invalid elements, otherwise an infinite swap-
ping loop might be generated [133]. An example of effective edge swapping is
shown in figure 4.29(a) where the triangle ABC' is invalid due to the intersection
of curvilinear line A — B with the straight line A — C. In this case swapping
edges A — C' with B — D will make two valid triangles ABD and BDC. If edge
swapping is not possible then the interior edge can be deformed. A strategy for
quadratic order edge deformation proposed by Dey et al. [133] is based on en-
suring that the normals of planes containing the straight edges has the same
sign as the normals of the plane containing the curved edges. Therefore, in figure
4.29(b) we consider a case where edge AC' is to be deformed by a quadratic fit
and moving the midpoint in the normal direction of AC. We define ¢; and ¢, to
be the tangent vector to the straight lines AB and AC and t3 and ¢4 to be the
tangent vector to the curved lines AB and AC. The criterion suggested by Dey
et al. [133] is to move the point until the sign of the vector product ¢4 X t3 is the
same as that of t5 X t1, or equivalently

(t2 X tl) . (t4 X tg) > €,

where ¢ is a small constant.

Curvature Based Refinement

We have observed that problems with invalid elements tend to arise due to
excessive surface deformation relative to the size of the element. An alternative
approach to eliminating invalid elements is to try to avoid their generation by
controlling the coarse mesh element spacing relative to the surface deformation.
Curvature-based refinement in which the mesh size is obtained as a function
of the curvature has been proposed by several authors [165, 290] as a way to
obtaining an accurate piecewise linear approximation of a curved surface. This
type of approach has also been applied to curvilinear elements in [370] and uses
a variation of the curvature driven refinement of the coarse space mesh.

As shown in figure 4.30 (a) and (b), in this technique a curve is locally
approximated by a circle of radius R, the radius of curvature. We assume that
the mesh spacing can be represented by a chord of length ¢ in the circle and a
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D

Figure 4.29 Edge swapping and edge deformation to avoid the construction of invalid
triangles.

spacing d in the normal direction. In the modelling of viscous flows, the value of
¢ is usually prescribed to achieve a certain boundary layer resolution. The value
of ¢ is, therefore, chosen to guarantee that the osculating circle representing the
curve does not intersect the interior sides of the elements, i.e., 8 > 90° for the
triangular element. The value of ¢, which should be considered as a maximum
mesh spacing, can now be obtained as a function of R and 4. Its value ¢; for

triangular elements is
[ 25
< Ry ——. 4.97
Ct > R1o ( )

The corresponding value ¢, for quadrilateral elements is

2R6 2R

chR—l—é 1+ 5 (4.98)
where the displacement ¢ is assumed to be the same on either side of the rectan-
gle. It is interesting to notice that, for a given d, the quadratic element allows for
a mesh spacing c, which is about twice the value of spacing ¢; for the triangu-
lar element. If we apply the curvature-based refinement to the original problem
shown in figure 4.28 we obtain a spacing which prevents the generation of invalid
elements as shown in figures 4.30(c) and (d). However, we note that indiscrimi-
nate application of the curvature criteria can generate too much refinement since
invalid elements are only be generated when the local curvature is concave with
respect to the element volume. Selective refinement where refinement is only ap-
plied in regions of the domain which are locally concave provides a better mesh
spacing as shown in figure 4.30(d).

4.3.5.3 Extension to Three—Dimensions

For many two-dimensional problems the techniques discussed in sections 4.3.5.1
and 4.3.5.2 are often not necessary since in two-dimensions meshes can often
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(¢) Curvature refinement (d) Selective refinement

Figure 4.30 Determination of minimum spacing ¢ based on local radius of curvature
R and interior spacing ¢ for (a) triangular elements and (b) quadrilateral elements. Ap-
plication of curvature refinement to the problem of figure 4.28 using (c) indiscriminate
curvature refinement and (d) selective curvature refinement.

be “hand crafted” to avoid invalid elements. However, in three-dimensions this
is not the case partly due to the problems of even visualising computational
meshes. It is in three-dimensions that many of the more complicated meshing
strategies are most beneficial. In this section we will outline how the concepts
described in sections 4.3.5.1 and 4.3.5.2 can be extended into three-dimensions.

Boundary Edges Constrained to a Surface

As we discussed in section 4.3.5.1 when a CAD edge or surface is represented
by an isometric mapping (i.e., those that preserve lengths) the procedure of defin-
ing the edge mapping x 2 (£) based on the same distribution of collocation points
in the u-space as the ¢-space (see figure 4.26) produces reasonably good quality
elements. However, when the mapping is anisometric! this simple approach can
produce highly nonlinear mappings leading to badly shaped elements. A solu-
tion to avoid this problem is to apply an extension of the minimisation procedure
similar to equation (4.96). In a three-dimensional “bottom-up” generation strat-

1Not isometric
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Figure 4.31 Influence of surface and edge mappings on the spectral/hp-type mesh
generation procedure. (a) Anisometric CAD description. (b) High-order mesh using a
transfinite interpolation in the parametric space as shown in figure (e). (d) High-order
mesh using an optimised point placement in the parametric space as shown in figure
(f).(d) Comparison of errors in an elliptic problem using the different meshes.

egy the edges which lie on a boundary curve can be dealt with by optimising
equation (4.96). The next stage of the generation is to determine edges which lie
within a boundary surface which is now represented by a two-dimensional para-
metric space g(u) = [g1(u), g2(u)] where u = [u, v]. Equation (4.96), therefore,
becomes a two-dimensional functional in terms of [u, v] of the form

Je (ay, ..

Ui41, Uz‘+1) - g(ui,vi)HQ

Eiv1 — &

P-1

_ N el
Lup_1) = Z
i=1

To determine the location of the points (u;,v;) for i = 1,.., P — 1 we need to
minimise J. where once again &;, © = 0, P — 1 represents the nodal spacing in the
standard region for example using Gauss-Lobatto-Legendre integration points.
The minimisation of J. provides a set of points, uy, which give a near optimal
spacing ¢y = g(ug,vy) in the sense of minimising the elememt surface Jacobian.
The points §;, and x; are then sufficient to generate a P-order polynomial ap-
proximation using a collocation projection. However, unlike the one-dimensional
case the edges are now geodesics of the surface. In [435] the minimisation pro-
cedure was also extended to determine the triangular face mapping for use in

hybrid elements.
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As a final illustration of the role of the mapping we present the example
shown in figure 4.31. We consider the generation of a tetrahedral spectral/hp
mesh of fifth-order polynomials within a simple cubic computational domain
0 < z,y,z < 10. The faces of the cube are located on tensor-product surfaces
defined by an anisometric mapping shown in 4.31(a). The spacing varies linearly
with a value of 0.1 at the boundary and 2.1 at the centre of the faces. The
anisometry of the mapping is due to the fact that the unevenly spaced network
of lines depicted in 4.31(a) is obtained as the image of a network of coordinate
lines u = const. and v = const. in the parametric plane which are uniformly
spaced with Au = Av = 1. The curve definition of the edges representing the
intersection between each of the faces was taken to be isometric.

A standard h-type unstructured mesh generation process was used to con-
struct a coarse mesh with 66 elements. Although the p-type elements can easily
be constructed on a planar surface by a linear interpolation between the ver-
tices, we have chosen to reconstruct the surface elements using the parametric
definition of the surface as required for a non-planar surface. Therefore, in this
geometry an optimal solution which would give elemental mappings with con-
stant Jacobian is a linear distribution of points between the vertices.

Using a straightforward transfinite interpolation of points in the parametric
space (u,v) results in the highly distorted surface mesh shown in figure 4.31(b).
In this figure we have connected all the interior edge and face nodal points
using a triangular mesh and highlighted the element boundaries on one face with
dark lines. The distribution of points in the parametric plane for the highlighted
surface are shown in figure 4.31(e). If we now apply the optimisation procedure
[435], we obtain the surface mesh shown in figure 4.31(c) which produces a fit very
close to a linear mapping between the vertices. A direct consequence of obtaining
a good physical surface distribution is that the parametric distribution becomes
very distorted as shown in figure 4.31(f).

Finally, we compare the L? error to the solution u(z,y,z) = sin(0.27x)
sin(0.27y)sin(0.27z) of a Poisson equation to assess the influence of mesh dis-
tortion on the solution accuracy. Figure 4.31(d) compares the error of solutions
obtained using computational meshes from a transfinite parametric fit (figure
4.31(b)) with those from an optimised parametric fit (figure 4.31(c)) and a stan-
dard linear fit between the physical vertices. The transfinite parametric fit leads
to elements with singular Jacobian and so it is not surprising that the error
quickly saturates at 1 x 1072. The optimised surface mapping, with a conver-
gence tolerance in the parametric space of € o< 0.3/P?, follows the error of the
linear fit up to a polynomial order of P = 8 where the error is of order 1 x 1074,
For higher order expansions the rate of convergence decreases when compared to
the standard linear discretisation. However, increasing the convergence tolerance
of the optimal iterative procedure reduces the saturation level.

Curvature Based Refinement on a Surface - Hybrid Meshing

The extension of the curvature based refinement discussed in section 4.3.5.2 to
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Surface

Figure 4.32 Notation for curvature refinement in a surface.

surfaces is relatively straightforward. The refinement criterion given by formulae
(4.97) and (4.98) can be applied in the two principal directions or the surface as
illustrated in figure 4.32. The corresponding mesh spacings, ¢; and ¢z, can then
be calculated from the values of the principal curvatures k; o = 1/R1 2 and the
normal mesh spacing § using formulae (4.97) and (4.98).

As noted previously, the minimum spacing c1, ¢co for a quadrilateral surface
normal face is twice that of a triangular surface normal face. This leads us to the
conclusion that hexahedral or prismatic elements adjacent to a curvilinear surface
are less likely to generate invalid elements than tetrahedral elements. However,
tetrahedral elements provide greater geometric flexibility in the interior of the
domain. Therefore, a hybrid mesh containing a mix of these elements provides a
good compromise between these two factors. Indeed, to generate boundary layer
meshes typically involves the extension in the surface normal direction of the sur-
face discretisation. If the surface is discretised using triangles the surface normal
extension directly generates prismatic shaped elements which can be subdivided
into tetrahedrons if desired. However direct use of the prismatic discretisation
is favourable from an element validity point of view and local approximation.
This type of strategy has been adopted in figures (4.28) and (4.30) whereas a
tetrahedral boundary layer was adopted in figure (4.24).

Interior Element Modifications

As discussed in the two—dimensional case, it is often attractive from an ap-
proximation point of view, to maintain straight-sided elements when constructing
three-dimensional elements . This simply arises as a consequence of the Jacobian
of straight-sided elements requiring low order polynomial approximations and so
not affecting the quadrature order used in integral evaluations. Although surface
optimisation and curvature-based refinement can reduce the potential for gener-
ation of invalid elements it may still be necessary to deform interior edges and
faces.

This point is illustrated in figure 4.33 due to Luo, O’Bara and Shephard
[313, 133]. Figure 4.33 (a) shows an initial coarse straight sided mesh of this
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Figure 4.33 High order curvilinear mesh of an engineering component: (a) initial
straight sided coarse mesh, (b) high-order curved mesh conforming to curved geom-
etry and (c) close up of high-order mesh demonstrating interior element deformation
required to prevent the generation of invalid elements. (Courtsey of M. Shephard).

complex domain representing an engineering component. Figure 4.33 (b) shows
the final high-order curvilinear mesh which reproduces the curved nature of
the component. However, in order not to generate invalid elements the interior
edges have to be curved as shown in the close up of the curvilinear mesh of the
component in figure 4.33(c). Different strategies to interior modifications have
been proposed in the work of Dey et al. [134, 133] and Luo et al. [313]. These
strategies involved edge and face swapping and deletion as well as interior edge
and face deformation. The more recent work of this group has also involved the
use of Bezier representation to produce a more automatic approach to invalid
element detection and modification [313].

4.3.6 Particle Tracking in Spectral/hp Element Discretisations

In the proceeding section we have discussed the formulation of spectral/hp ele-
ment approximations for Eulerian descriptions of partial differential equations.
These techniques will be applied to the advection equation in chapter 6 and
the Navier-Stokes equations in chapters 8 and 10. Solving either the advection
equation or the Navier-Stokes equations with a spectral/hp element formula-
tion implies that we have a high-order polynomial approximation of the velocity
field. A popular post-processing technique in fluid mechanics is to consider the
streamlines, for steady flow, or the path lines, for unsteady flow. However, this
requires being able to track particles over the high-order velocity field. One ap-
proach to implement particle tracking is to divide the macro element of the
spectral/element discretisation into many small elements within which a linear
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Figure 4.34 Streamlines in a junction between two straight pipes. The high-order
finite element mapping is based on a seventh-order polynomial expansion and the cor-
responding streamline is represented by the dotted line. The solid line is the streamline
starting at the same point as calculated by a commercial package using linear interpo-
lation on a subdivision of the high-order mesh. (Remark: one high-order element was
divided into 42 linear elements)

approximation is applied. On this finer mesh then commercial particle tracker
can be applied. For many post-processing requirements this may be satisfactory
when high accuracy is not required. However, when developing algorithms such
as the strong form of the semi-Lagrangian method discussed in sections 6.4, the
error associated with such a linear approximation is inadequate.

The approximation of a spectral/hp element velocity field by piecewise linear
polynomials on smaller elements can result in the inaccurate calculation of the
trajectories as shown in figure 4.34. Streamline integration is very sensitive to
small changes in kinematics and therefore inconsistencies between the high-order
and a linear velocity field approximation can result in kinematic changes that
have a significant effect on the pathlines in complex flow regions. Figure 4.34
compares the particle traces for a spectral/hp element velocity field calculated
by the commercial package Tecplot [10] and the algorithm proposed in [109].

The focus of this section is, therefore, to review approaches to particle track-
ing using a consistent approximation of the velocity field. The problem of calcu-
lating flow lines for high-order polynomial element representations has received
little attention to date. Two early examples of particle tracking within quadratic
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RK1: RK2: 1|1 RK3: RK4: 5|0 5
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Table 4.1 Butcher arrays for a one-stage Euler method (RK1), two-stage improved
Euler method (RK2),three-stage Kutta’s formula (RK3) and four-stage classical
Runge-Kutta (RK4) schemes.

order elements can be found in the literature of non-Newtonian flows [199,
445] where the strain history calculated along streamlines was used in the consti-
tutive equations for the stress tensor. In Sun & Tanner [445] the time integration
was applied in physical space on a triangular mesh, whereas in Goublomme et
al. [199] time integration was performed in the parametric space of the standard
region using unstructured quadrilateral meshes. Following [109] we will discuss
both of these integration strategies in what follows.

4.3.6.1 Runge-Kutta Based Particle Tracking

The problem of finding the trajectory x(¢) of a particle is formulated as a set of
ordinary differential equations

dx

— =u(x,t), 4.99
=) (499)
where x is the position in space and w is the velocity field. This simply states
that the tangent to the trajectory curve at a point of coordinates x is parallel
to the velocity uw at that point. The initial condition for this problem amounts
to specifying the position xg of the particle at a specific time, ¢ = tg, such that

x (tg) = xo.

The two main types of integration schemes for ordinary differential equations
are multi-stage methods (mainly Runge-Kutta type) and multi-step methods
(for example Adams-Bashforth). Whilst multi-step methods are typically more
efficient in problems where the velocity field is smooth they require a start-up
procedure and their time step cannot be changed easily dynamically. In particle
tracking, therefore, a multi-stage algorithm is attractive since it does not require
a start-up procedure and the time step can be altered dynamically.

The application of an s-stage explicit Runge-Kutta method to the general
system of ordinary differential equations

dy
E*f(yvt)a

with the initial conditions y(to) = y, results in the iteration
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Yyt =yt ALY bif,, (4.100)

=1

where y™ denotes the value y(t"),

1—1
Fi=F |y +At> aif; t"+adt |, (4.101)

J=1

s is the number of stages and At is the timestep. The values b;, ¢; and a;; are
the entries of the corresponding Butcher array [287]

The coefficients of this array define the particular scheme employed and some
examples are given in table 4.1.

The second term on the right-hand side of equation (4.100) is a weighted
average of the values f, taken at each stage. Hence, if we set

S

=1

then a generic Runge-Kutta scheme, as represented by equation (4.100), can be
considered as an Euler scheme that marches in time using an averaged value of
f. The same consideration can be applied to each stage, hence the second term
on the right-hand side of equation (4.101) can be considered as an Euler step

taken with average velocity
i—1
fi= Z aij f ;.
j=1

This interpretation of the Runge-Kutta scheme is depicted in figure 4.35 for the
three-stage scheme which shows how each stage of the Runge-Kutta integration
can be envisaged as an Euler step in the direction of a suitably averaged velocity.

4.3.6.2 Particle Tracking for Spectral/hp Elements

Two possible strategies for tracking particles depend on the space in which the
time integration is performed [109]. The first strategy is to perform the time
integration in the global physical space of the solution € . Given the ele-
mental definition of the flow field, this process involves searching for the element
containing the point where the velocity is to be evaluated followed by the inter-
polation of the velocity using the expansion basis within the element. The two
computationally intensive operations to be performed are:
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Figure 4.35 Interpretation of the Runge-Kutta integration as a series of Euler steps
using a suitably averaged velocity. The figure shows the steps for a three-stage scheme.

(i) a nonlinear iterative procedure to find the local coordinates &, in the para-
metric space from the Cartesian coordinates x; in physical space, and

(ii) the interpolation of the velocity u at a point of parametric coordinates &;.

The second strategy performs the time integration in the parametric space
of the standard element & € ;. This approach involves advancing the particle
within an element using a transformed velocity field in the parametric space until
the particle reaches the element boundary. The approach is then continued in
the neighbour element sharing the boundary where the particle exits. The two
main operations to be performed are:

(i) the interpolation of the velocity u¢ at a point of coordinates &, in the

3
parametric space, and

(ii) a nonlinear iterative procedure to find the intersection of a pathline with
an elemental boundary.

In the following sections we will provide an overview of the two approaches and
also discuss ways of combining the methods.

Particle Tracking in the Physical Space

We recall that the explicit Runge-Kutta scheme (4.100) applied to the particle
trajectory equation (4.99) results in

s i—1
.’Bn+1 = $n+Ath1u“ U; =u $n+AtZaijUj y tn+CZAt
i=1 j=1

As mentioned previously there are two computationally intensive steps. The
first is to determine the inverse mapping &, = x~'(x) and the second it to
interpolate the velocity field to otain u;. In the above algorithm this is necessary
for every substep which depends on the order of the scheme. However, before
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performing either of these operations it is necessary to know within which element
the point z; lies.

In the case of elements with linear mappings the inverse mapping & = x ! (x)
is analytic. However, for curvilinear elements, or even bi- and tri- linear map-
ping of straight sided quadrilaterals and hexahedral elements the computational
expense is significantly higher. To appreciate why we need to consider a way of
determining the inverse mapping. One approach to determine the coordinate §;
such that x¢ (€,;) = x;, is to formulate this as the problem of finding a zero of a
function F (&;), where

F (&) =x" (&) — . (4.102)

The Newton-Raphson iteration [268] applied to equation (4.102) can be written
as

_OF  0x°

T oE T og

where k represents an iteration counter, i denotes the discrete point and J.
denotes the Jacobian of the mapping. In three—dimensions the above procedure,
per iteration, requires three interpolation (or backward transform) operations to
determine x¢(¢;) and additionally nine interpolation to evaluate J_ ' at &,. We
note that J. can be inverted analytically as discussed in section 4.1.3.4.

The potential cost of this evaluating the inverse mapping puts a high cost on
physical space particle tracking using high-order elements. The efficiency of the
searching procedure to determine which element a point, x;, lies, and therefore
reduce the potential algorithm cost, can be improved by using appropriate data
structures. If the number of elements in the mesh is large, tree structures [65]
could be used to find the element containing the starting point of a trajectory. In
the data structuring of many spectral/hp element methods connectivity informa-
tion between element is stored and so can be used to identify adjacent elements.
In [500] a more intesive check was adopted where the desired physical location,
x;, was checked against the normal of every discrete coordinate point known
along the element boundary at the quadrature points. This approach can guar-
antee whether a point lies in a straight sided element eliminating any erroneous
searches and inverse iterations. However, it is not sufficient test for a curvilinear
element, and further checks may be necessary.

Jo- gt —gl| =-F (&) a

Particle Tracking in the Parametric Space

An alternative method for particle tracking that avoids the the iterative solu-
tion of equation (4.102) is to use the parametric space description of the velocity.
Rather than considering the rate of change of the position of a particle in physical
space x, we can transform the velocity field onto the standard region, £ € Q.
We then obtain an equation representing the corresponding rate of change in
time of the particle position in the parametric space within element e as

d e
% — ug (&,1). (4.103)
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The transformed velocity ug in the standard element can be evaluated in terms of
the physical velocity u by applying the chain rule to each of its scalar components
so that

o d& 06 dry | 08 dxa | O&; dxs

9 a1 ara =8 i=1,2,3
Y T 0 T By dt | Owy dt | Oz di LTS
which can be written in matrix form as
0
ug = ¢ u, (4.104)
oxe

where we note that :fe are the standard geometrical derivatives used to differ-
entiate in an arbitrary region and so are usually known at the quadrature points
(see section 4.1.3.4).

Omitting the index e for simplicity, the use of an s-stage Runge-Kutta for
the integration in time of equation (4.103) leads to

s 1—1
£ =€ H ALY biug, ug, =ug [ €+ ALY aijug, t"+ At | . (4.105)

i=1 j=1

We note, however, that equation (4.104) can only be applied within the cor-
responding elemental region since the representation of parametric velocity, ug,

and the geometric derivatives aa—fe are only piecewise continuous. If we can deter-
mine the intersection of the particle trajectory with the boundary of the standard
element, (24, then the continuity of the local coordinates along a boundary can
be used to advance the particle to the next adjacent element. Such an approach
requires replacing At in equations (4.105) with the time step for the particle to
reach the boundary Ar.

As noted in [109], the parametric approach has eliminated the nonlinear in-
verse mapping evaluation using a physical space approach. We are, however, now
faced with the problem of determining the intersection of the trajectory with the
boundary of the standard element. If we use an Euler scheme (s = 1), the inter-
section with the boundary is easily determined since it is linearly dependent on
At. For a multi-stage scheme (s > 1), we see by inspection of equations (4.105),
that the point €""! is a nonlinear function of the time step. This means that
the calculation of the time step A7 required to move a particle exactly to the
boundary is also a nonlinear problem. Although an iterative scheme can be de-
vised to solve this problem, for elemental mappings which contain singular factors
observed to be ill conditioned making this approach in curvilinear spectral/hp
element methods unattractive [109].

Guided Search Approach to Particle Tracking

The previous sections have highlighted several problems in the implementa-
tion of the particle tracking algorithm in the physical and parametric spaces.
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Figure 4.36 Illustration of the guided search algorithm. The vector PQ represents the
step in the physical space parallel to the global averaged velocity vp evaluated at P.
The straight segments P'R’, R'S’ and S'T’ are steps in the parametric space parallel
to the transformed velocity vg at point P. The local velocity v is evaluated at the
points P’, R’ and S’ for elements e1, e2 and e3 respectively. The path PRST is the
image in physical space of the piecewise linear steps taken in the parametric space.

The main weakness of the physical space approach is the need to solve the non-
linear inverse mapping problem. This deficiency can be overcome by using a time
integration scheme in the parametric space but at the expense of requiring the
solution of the nonlinear problem of finding the intersection of the trajectory
with the elemental boundary. To overcome these problems a combined approach
was proposed in [109] where the velocity is predominantly evaluated in physical
space but utilize the parametric space. Such an approach eliminates the inverse
mapping iteration at each substep although it introduces an error associated
with the variation of the Jacobian of the mapping.

The philosophy behind the guided search is to have a particle leaving an
element in the parametric space eliminating the need to resort to an iterative
procedure to obtain &, = x~!(x;). Since the Runge Kutta scheme can be con-
sidered as a series of linear substeps, in this approach we take a series of linear
substeps in the parametric space instead of the physical space. This approach
is illustrated in figure 4.36 where we consider a step starting at point P in the
physical space. A linear step in physical space Ax = vAt would take the particle
to point Q. We then require the local parametric coordinate of point ) in order
to proceed. In the guided search, the parametric point P’ is advanced by a linear
substep A€ = vgl AT,, based on the local parametric velocity vzl. In general, the
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point will not remain within an element. The time taken for the point to meet a
boundary of the parent element (point R’ in figure 4.36) is A7, < At. Since the
step is linear and the boundary is planar, the intersection can be evaluated an-
alytically. To complete the guided search, a new parametric velocity vzz is then
evaluated at point R’ in element es. The point is then linearly advanced through
element ey over a time Ar., which is evaluated as the time for the particle to
reach S’. To complete the step an analogous proceedure is followed in element
es usign a new parametric velocity v?". The particle is then linearly advanced a
time Are, such that At = A7, + A7, + ATe,.

This procedure significantly reduces the computation time required to trace a
particle and overcomes the problems posed by the iterative solution of the non-
linear problems associated with the two previous particle tracking strategies.
The computational saving is a consequence of the fact that each small substep
of the above example only requires three interpolation operations to evaluate v
at each boundary intersection. This should be compared to twelve interpolation
operations required in the Newton-Rhapson iteration. If many substeps are nec-
essary due to multiple element boundary crossing, the guided search may still
be expensive but in general only one or two substeps are typically required. The
guided search is exact when applied to elements with a constant Jacobian but an
error arises when the trajectory crosses elements with varying Jacobian. Often,
high-order schemes use linear element mappings when dealing with straight-
sided elements and so varying Jacobian are usually associated with curvilinear
elements.

4.3.6.3 Ezamples of Particle Tracking Schemes

We now have a variety of possible strategies to handle particle tracking within
high-order spatial representations and so compare the following four approaches:

1. Particle tracking in the physical space evaluating the inverse mapping using
a Newton-Raphson iteration as discussed in section 4.3.6.2. We will denote
this scheme as the physical space algorithm.

2. Particle tracking in the physical space using the guided search algorithm
discussed in sections 4.3.6.2. We will denote this scheme as the guided
search algorithm.

3. Particle tracking in the physical space using the guided search algorithm
(see sections 4.3.6.2) and checking the error between the physical space
advancement and the guided search. This allows the error introduced by
curved elements to be monitored and requires an error tolerance € above
which the iterative technique to evaluate the inverse mapping is applied.
We will refer to this scheme as the guided search () algorithm.

4. Finally, a hybrid scheme where the particles are advanced in the parametric
space, as discussed in section 4.3.6.2, provided they remain within the ele-
ment during all substeps of the Runge-Kutta algorithm. If during a substep
the particle leaves the elemental region then physical space scheme using



232 Spectral/hp Element Methods for CFD Ch. 4

Figure 4.37 Mixed prismatic and tetrahedral meshes using 83 elements within a cylin-
drical pipe: (a) curved elements, (b) straight-sided elements.

the error-checked guided search is applied. We will refer to this scheme as
the hybrid algorithm.

In all of the above schemes care should be taken to consider the role of
numerical precision on the criterion to determine whether a point lies within an
element or when to say a point lies within an elemental face. For the interface
between two curvilinear elements it is possible to get into an infinite loop if
the velocity is almost tangent to the face which is only defined up to numerical
roundoff. Further discussion on intersection criteria can be found in [109].

In the following tests a range of schemes are considered including Euler/RK1,
RK2, RK3 and RK4 using the meshes shown in figure 4.37 which contain 37
prismatic elements adjacent to the boundary and 46 tetrahedral elements in the
rest of the domain. The curvature of the surface is represented by positioning
one of the triangular faces of the prismatic elements on the cylindrical surface
as shown in figure 4.37(a). The elemental boundary curvature can be removed
to obtain a linear surface representation as shown in figure 4.37(b). Within this
domain an analytic unsteady solution, previously used in [121], was adopted of
the form

u=—-zx, v=-01y, w= —2026_0'1t,

which corresponds to a particle location at time ¢ of

z(t) = x0e™,  y(t) =yoe O, z(t) = 206200(670’“_1),
where g, Yo, 29 are initial coordinates of the particle. The starting point was
taken to be xg = 0.5,y¢ = 0.25, zg = 0.35, and since the solution of this system is
relatively stiff a relatively short final time T' = 0.2 was considered. Figure 4.38(a)
shows a comparison of the convergence rate of the guided search algorithm with
error checking, using a tolerance e = 107'2, and the physical space scheme for all
the Runge-Kutta schemes. The error in these tests is measured as the distance
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Figure 4.38 (a) Temporal convergence for different Runge-Kutta schemes using an
analytic solution with the physical space and guided search (e = 107*2) algorithms. (b)
Temporal convergence for the RK4 scheme using the physical space, guided search and
hybrid algorithms.

between the final location of the particle and the analytic solution relative to the
exact value.

Figure 4.38(b) shows the converge rate for three schemes using the RK4 time
integration where we observe that the guided search algorithm with no error
checking only produces a linear convergence rate. Since the trajectory deter-
mined by the guided search is influenced by the nonlinear elemental mapping
the deterioration of convergence is to be expected. We note, however, that the
hybrid algorithm maintains a fourth-order convergence rate until a level of 10~°
where the error of the elemental mapping saturates the results.

To compare the relative merit of each scheme, figures 4.39(a) and (b) show
timings for two numerical experiments. In both cases, a circular ring of particles
was released within the computational domain where the velocity was set to be
the numerical solution to the Poiseuille flow. All the tests were performed using
the RK4 scheme over 100 time steps with a time step of At = 0.0125. In the
first test, shown in figure 4.39(a), we consider a ring of diameter 0.45D chosen to
guarantee that all particles remain within the tetrahedral mesh. Since all these
elements have linear mappings the results indicate that there is practically no
difference between the computational cost of the different algorithms for a fixed
polynomial order. The scaling within this region is approximately O(P!-¢) and is
well below the asymptotic scaling value of O(P3) expected when the interpolation
of the velocity field dominates.

Releasing a ring of particles of a larger diameter, 0.9D, produces a significant
difference in the timings included in figure 4.39(b). These particles now travel
within the curved prismatic region of the computational domain and are there-
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Figure 4.39 (a) Time to march 100 particles on a circle of radius 0.45D through
a mesh of tetrahedral elements.(b) Time to march 100 particles at a radius of 0.9D
through a region discretised by prismatic elements.

fore more sensitive to the non-linear mapping introduced by the deformation of
the elements. In this example the physical space particle tracking is the most
costly. It is approximately four times more expensive than the guided search
algorithm without error checking. If we introduce error checking in the guided
search algorithm, the cost depends on the error tolerance e.

4.4 Exercises: Implementation of a 2D Spectral/hp Element solver for
a Global Projection Problem Using a C° Galerkin Formulation

To complement the discussion of local and global spectral/hp element operations
we propose the following series of exercises to help develop a two-dimensional
spectral/hp element solver. In section 3.5 we have already suggested some ex-
ercises to develop a local elemental mass matrices for triangular and quadrilat-
eral tensorial expansions. In this section we will build upon these exercises and
develop a global C° continuous projection operator as well as discuss how to
enforce Dirichlet boundary conditions. In section 5.6 we will then finally extend
the multi-dimensional projection operator to a two-dimensional elliptic solver.
The exercises are structured with a view towards developing a two-dimensional
elliptic solver based on a standard Galerkin formulation. Although all of the con-
cepts applied in this section have been discussed in the previous sections of this
chapter, the exercises will demonstrate how each of the concepts can be used in
practice.
Some useful codes are also available on the web page

http://www.ae.ic.ac.uk/staff/sherwin/HpSpectralBook/

1. Similar to section 2.6 a good starting point for the development of the
solver is to set up routines to perform numerical integration in both the
standard regions and a general element. We recall from section 4.1.1 that
for integration in the standard region we require the quadrature weights
w;,w; and zeros zi;, zz; which can either be generated as discussed in
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appendix B.2 or using the code in the Polylib library from the web page.
Having obtained the zeros and weights and following sections 4.1.1.1 and
4.1.1.2, try the following exercises:

(a) Integrate u(&y, &2) = [&1]° x [&]°
Q-10-1

/ / (61.6) dadeo = 3 S wiwy (s, &37) =

=0 j=0

using Gauss-Lobatto-Legendre quadrature in both the & and & di-
rections with () = 4,5 and 6.

(b) Integrate u(&1,&2) = [£1]¢ x [£]°

/ / ® ) derde = /
Q—

1=

w(ni, n2) ( _2772) dnidna

L& 2
Z (i, 12g) = 45
0 57=0
using Gauss-Lobatto-Legendre quadrature in the 7; direction and
Gauss-Radau-Legendre quadrature (including the point 72 = —1) in
the 7y directions with @ = 4,5 and 6. Note that the factor (1 —n2)/2
factor could also be incorporated into the integration by using Gauss-
Radau-Jacobi-(1,0) quadrature, see section 4.1.1.2.
(c) Consider a general straight sided quadrilateral element, Q¢, defined

to have vertices (z7,z3) = (0,0), (zP,2P) = (1,0), (2{,2§) =
(2,1), (zf,23) = (0,1). Numerically integrate u(&1, &) = [61]°x (€],
ie.
[ wtoraz) dondes = [ uler, €17 deadee
€ Qst
Q-1Q-1
218
= Z Z wiw;ju(€1is §2)]J (€14, §25) = T
i=0 ;=0

using Gauss-Lobatto-Legendre quadrature in both the & and & di-
rections with @ = 4,5 and 6. You will need to determine the local
mapping x;(£1,&2) as discussed in section 4.1.3 and calculate the Ja-
cobian as discussed in section 4.1.3.3. For this case the Jacobian can
either be evaluated analytically or numerically using the differentia-
tion techniques discussed in 4.1.2.1.

(d) Consider a general straight sided triangular region, Q¢, defined to
have vertices (z{',23') = (1,0), (P, 28) = (2,1), (xlc,xg) (1,1).
Numerically integrate u(&1,&2) = [€1]° x [£2]°, i.e.

/ u(xy, x2) dridas :/ w(ni, n2) (1;"2
© Qst

) |J| dnidns
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Z Z 511362]) (1 772J) |J(€1u€2])| - 3_71

i=0 ;=0

using Gauss-Lobatto-Legendre quadrature in the &; direction and
Gauss-Radau-Legendre quadrature in the & direction with @ = 4,5
and 6. As with the last exercise you will need to determine the lo-
cal mapping x;(&1,&2) as discussed in section 4.1.3 and calculate the
Jacobian as discussed in section 4.1.3.3.

(e) As a final exercise using the elemental domains defined in 1(c) and
1(d), calculate Z = [, sin(z1)sin(xz) dx for 2 < Q < 8 and plot
the error, €, between the exact and numerical integrals versus ) on
semi-log axes. In using Gaussian quadrature we are essentially approx-
imating the smooth function sin(x)sin(y) with polynomials of order
Q — 1. The error, ¢, will therefore be proportional to € occ C%. There-
fore, plotting log(e) versus @ should asymptotically give a straight
line since taking the log of the error relationship log(e) < Q log(C).

2. Having developed routines for integration in a general elemental region we
continue our spectral/hp element construction by considering an elemental
projection problem in two-dimensions. Consider the projection problem
ud(x1,29) = f(x1,72) where f(x1,22) is a known function for example
f(z1,m2) = [21]% X [22]° or f(z1,22) = sin(x1) sin(xa). We recall from sec-
tion 2.6 that projection problems are helpful since they do not require any
boundary conditions to be imposed. Extending the formulation in section
2.2 our Galerkin problem in the elemental region 2¢ can be states as:
Find u® € X, such that

/ (€’ (€)dE = [ v f(€)dE, vl eV,

Qe

and for a Galerkin expansion we define the expansion space X° to be
the same as the test space V°.

Defining a discrete expansion ¢,q(£) and accordingly a discrete solution
ud(€) = > p g UpgPpq(§) leads to the matrix problem (see also section
4.1.5.3)

M¢a = (BTWB) a=BTW,

where the above matrices and vectors were defined in section 4.1.5.1.

In section 3.5 we previously discussed how to construct the elemental mass
matrix in the standard elemental region €. In this exercise we need to
construct the elemental matrix for a general shaped subdomain. At the
elemental level we could use any of the two-dimensional bases defined in
chapter 3. However, for use in C° expansion we will focus on either the
tensorial quadrilateral expansions ¢pq(€1,&2) = hp(€1)he(§2) 5 Ppg(&1,&2) =

¥ (§1)1g (§2) or the tensorial triangular expansion ¢y, (€1, 82) = ¥y (m W,l;q (n2).
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Conside the following task using one (or more) of these bases within ei-
ther a straight sided quadrilateral region with vertices (z1!,25') = (0,0),
(B, 28) = (1,0.5), (2§,25) = (2,1), (zP,2P) = (0.5,1) or a straight
sided triangular region with vertices (z{', x3') = (0,0), (2¥,22) = (1,0.5),
(ZC?,.TQC) =(2,1):
(a) Construct the mass matrix M “ in the region Q¢ for P, = P, = 8 and
Q1 = Q2 = 10 where

Me{m(pg)]n(rs)] = / Oy (©)0ra (O IO dE  0<mun < N,

In the above equation we recall that J(&) is the Jacobian of the
mapping between the element Q¢ and the standard region Qg and
m(pq),n(rs) represent mappings between the index pairs (p,q) and
(r,s) with the unique indices m and n as discussed in section 4.1.5.1.

(b) Construct the right-hand-side vector f(= BTW f)

Finto)) = [ onm(@7©I©1 & 0<m<N,

where f(€) = [£1]7 x [£2)% and using a uniform polynomial order P = 8
and uniform quadrature order ) = 10. Note that it is economical to
evaluate the inner product operation BT W f by taking advantage of
the tensorial nature of the expansion basis using the sum factorisation
technique discussed in section 4.1.6.

(c) Using a matrix inversion technique (for example the Cholesky factori-
sation and routines dpptrf and dpptrs in the LAPACK library [13])
invert the symmetric mass matrix M¢ and solve for @ = [M¢]~f.
Verify your solution by performing the backwards transformation Bu
(using sum factorisation) to evaluate the solution at the quadrature
points and verify the solution is equal to u®(&14,&2;) = [€13]7 x [€25]°.

3. To solve the elemental projection problem of the question 2 using a non-
tensorial nodal basis we can adopt the matrix construction directly since
the sum factorisation techniques are no-longer applicable. As discussed in
section 4.1.5.1 the basis matrix for a Lagrange non-tensorial basis B[m/][n] =
L, (&,,) can be evaluated at the quadrature points &,,(ij) = [n1i, n2;] (see
equation (4.53)) as

B = BrBj/

where By is a square matrix of the basis ¢, evaluated at the nodal points
Cpr

By [n][n(pg)] = ¢pq(Cor)
and B is a non-square matrix of the basis ¢,4 evaluated at the quadrature
points &,,,(;;y, L.e.

Br[m(ij)][n(pa)] = épqg(&mij))-
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The elemental mass matrix can then be assembled in matrix form as M ¢ =
BTW B where W is defined in section 4.1.5.1.

(a)

Solve the elemental projection problem in the triangular region de-
fined in question 3 using a Lagrange polynomial basis defined through
the electrostatic points as given in appendix (D). Take P = 8 (N,,, =
45) and f(&) = [&1]7 x [£2]% and verify that the expansion coefficients
@ = [M®~'f where f = BTW f are the exaction solution at the
nodal/electrostatic points. Although any conveniently defined tensor
basis can be used the properties of the orthogonal basis the bases
Ppg = 1/1;1/)2q are numerically advantageous.

4. The next step is to solve the projection problem for multiple elements.
Consider the four element quadrilateral or triangular mesh shown in figure
4.40. We want to construct the global projection for a P = 6 polynomial
order expansion within this region. For either a quadrilateral or triangular
expansion perform the following steps:

(a)

(b)

Using the discussion in sections 4.2.1 and 4.2.1.1 construct a boundary
mapping array bmaple|[i] which maps the local elemental boundary
degrees of freedom to the global boundary degrees of freedom. For a
modal expansion you will also need to define the sign array signle][i].
Construct the elemental mass matrices M€ 1 < e < 4 for the ele-
ments in the mesh. In constructing the mass matrix use a local index
ordering so that the boundary degrees are listed first and follow a
similar ordering convention as the mapping array you have defined in
part (a). Note that since the elements are straight-sided (and in the
quadrilateral case they have similar angles to the standard region)
the elemental mass matrices will be identical as each element has the
same constant mapping Jacobian.

Construct the global mass matrix M = AT M°®A as discussed in
section 4.2.2. Since we have only defined a boundary mapping array
the interior modes can be ordered in continuous blocks looping over
each element (see also figure 2.11). The action A and A7 can be
evaluated as shown in equations (4.81), (4.82) and (4.83).

Construct the right-hand-side vector f g = ATBTWe ¢, where f¢
contains the function f(x1,x2) = cos(z1)cos(xa) for (z1,z2) € Q°
evaluated at the elemental quadrature points. A useful debugging case
is to also consider the case where f(z1,xz2) = 1.

By inverting the global mass matrix solve the problem i, = M -1 f g
This inversion can also be performed using the static condensation
technique discussed in section 4.2.3. To recover the local solution
within each element we can use the assembly operator @; = @° =
Adig. The local solution at the quadrature points can then be deter-
mined in each element from u® = B4° as discussed in section 4.1.5.2.
Determine the L? error in the projection, € [ [, (u® — u®*)?dx] 12
for different polynomial orders 4 < P < 10 and for different uniform
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Figure 4.40 Four element domains for global projection problems

discretisation in the x1 and xo directions. Plot the error as a function
of polynomial order and the square root of the number of elements
(or element size h) to demonstrate the difference between h and p
convergence for this smooth problem.

5. The last exercise is to impose Dirichlet boundary conditions on the solu-

tion. This will also be necessary in solving the elliptic problems suggested
in section 5.6. Dirichlet boundary conditions can be imposed using the
lifting technique discussed in sections (2.2.1.3) and (4.2.4.1). This requires
linearly decomposing the solution into a known function, which satisfies
the Dirichlet boundary conditions, and the remaining solution with ho-
mogeneous boundary conditions. At an implementation level this process
involves renumbering the boundary mapping array bmap[e][i] as described
in section 4.2.4. We also require an elemental boundary transformation
to determine the expansion coefficient of the degrees of freedom on the
Dirichlet boundary as discussed in section 4.3.2. Consider the global pro-
jection problem of question 4 with a Dirichlet boundary condition on the
domain boundary xz2 = 0 of the domains shown in figure 4.40. The Dirichlet
boundary condition therefore is u(9Qp) = cos(z1). Solve the global projec-
tion problem of question 4, constrained to satisfy the Dirichlet boundary
condition in the following step:
(a) Determine the expansion coefficient of all boundary degrees of free-
dom using the elemental boundary transformation technique of sec-
tion 4.3.2
(b) Order the boundary mapping array bmaple|[i] so that the known (or
lifted) boundary degrees of freedom are ordered after the unknown
boundary degrees of freedom. This can either be performed “by-hand”
or implementing an automated procedure as discussed in section 4.2.4.
(c) Invert the global mass matrix using a static condensation technique
where only the submatrix of the boundary matrix system correspond-
ing to the unknown degrees of freedom is inverted as shown in section
(4.2.4.2) and figure (4.21). Verify that your answer converges for dif-
ferent polynomial orders and number of elemental domains.



