
3

Multi-dimensional Expansion Bases

In chapter 2 we introduced the standard Galerkin technique for spectral/hp
element discretisation in one-dimension. Using this construction we illustrated
how a global C0 continuous expansion could be decomposed into either a modal
or nodal expansion within a element domain in a standard region. We begin
extending this concept to multiple dimensions in this chapter by discussing
spectral/hp element multi-dimensional expansions in different standard regions.
In chapter 4 we extend the one-dimensional discussion from chapter 2 on ele-
mental operations such as integration and differentiation to multi-dimensions,
and also discuss the construction of a global expansion from the local expansions
defined in this chapter.

Although the extension to multi-dimensions is analogous to the one-dimensional
case, the aim of this chapter is to explain the reasons for the different choices
of expansion bases as well as discussing their numerical implementation. All the
expansions discussed in this chapter will be considered within a standard region
Ωst. In two- or three-dimensions, we now have a choice of different standard
regions. In two-dimensions we will consider standard regions that are either a
quadrilateral or a triangle. In three-dimensions we will consider standard regions
that are either a hexahedron, prism, pyramid, or tetrahedron, which collectively
we refer to as hybrid domains. Since we will only be referring to these stan-
dard regions we shall not use the superscript e to denote the elemental domain
within this chapter. The assembly of these expansions in multiple domains and
the treatment of integration and differentiation is discussed in chapter 4.

For tensorial bases we shall denote the polynomial bases by φpq(ξ1, ξ2) or
φpqr(ξ1, ξ2, ξ3) in two- or three-dimensions, respectively, where ξ1, ξ2, ξ3 are the
standard Cartesian coordinates. This notation may equally well refer to a modal
or nodal expansion within a triangular, quadrilateral, or any of the three-dimensional
standard regions. Although there is a wide variety of expansion bases, particu-
larly for the standard h-type finite element method, we shall be restricting our
attention to those most commonly used in the spectral/hp element literature.
The majority of the bases to be discussed can be expressed in terms of a product
of one-dimensional functions or tensor product, for example,

φpq(ξ1, ξ2) = ψa
p (ξ1)ψa

q (ξ2),

or

φpq(ξ1, ξ2) = hp(ξ1)hq(ξ2).
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Expansions which can be constructed with this form allow many numerical op-
erations to be performed very efficiently using the sum factorisation or tensor
product techniques discussed in section 4.1.6.

Although most quadrilateral hexahedral expansions are typically constructed
from a product of functions, this is not so common for expansions in triangular
and tetrahedral domains. In section 3.1 we give a comprehensive discussion of
the tensorial extension for all hybrid regions and also introduce the underlying
concepts which will be helpful when constructing a tensorial basis for the un-
structured region as covered in section 3.1.1. Finally, in section 2.3.4 we discuss
non-tensorial, nodal bases in the triangular regions which are compatible with
the standard nodal, tensor-based quadrilateral basis.

From a purely implementation point of view, the following details may be of Implementation

note: Layout of the

chapter from the im-

plementation point of

view.

interest. The most commonly used spectral/hp element bases are those which
can be expanded into a globally C0 continuous expansion. The standard tensor
product expansions for modal and nodal bases in quadrilateral and hexahedral
domains are defined in 3.1. The decomposition of these expansions into an in-
terior and boundary decomposition is discussed in section 3.1.1.2. For the hy-
brid domains, that is triangular and quadrilateral regions in two-dimensions and
tetrahedral, pyramidic, prismatic and hexahedral domains in three-dimensions,
a unified C0 continuous generalised tensorial expansion is defined in sections
3.2.3.1 and 3.2.3.2, and a full listing is also provided in appendix D. This expan-
sion makes use of the collapsed coordinate system discussed in sections 3.2.1.1
and 3.2.1.2, and the assembly of these expansions is detailed in section 3.2.3.3.
Finally, two non-tensorial nodal sets of points in a triangular region, compatible
with the nodal quadrilateral expansion, are introduced and defined in sections
3.3.3 and 3.3.4 as well as appendix D. For a discontinuous Galerkin formula-
tion it is sometimes convenient to use orthogonal expansions in preference to the
modified globally C0 continuous, expansion. Tensor-based orthogonal expansions
in all two- and three-dimensional hybrid regions are defined in section 3.2.2.1,
which also uses the collapsed coordinate systems discussed in sections 3.2.1.1
and 3.2.1.2.

Nomenclature

Although already specified in the general nomenclature section, we highlight
again here in table 3.1 some of the new notation adopted in this chapter. Simi-
larly to chapter 2 we will use ξ to denote the standard Cartesian directions with
a subscript to identify different orthogonal directions depending on the dimen-
sion of the basis. Also, following the convention of chapter 2 we will denote any
general polynomial expansion as φpq(ξ1, ξ2) or φpqr(ξ1, ξ2, ξ3) in two- or three-
dimensions, respectively. The indices p, q and r denote the different components
of the tensorial expansion, which is introduced in 3.1. Two commonly used ten-
sorial expansion bases, already introduced in 2.3.3.3 and 2.3.4.2, are the modal
modified basis, ψa

p(η), and the nodal Lagrange basis, hp(ξ).
To define a generalised tensorial expansion in simplex domains, such as tri-

angles and tetrahedrons, it will be necessary to introduce a new, non-orthogonal
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ξ = (ξ1, ξ2, ξ3) Local Cartesian coordinates.
η1, η1, η2, η3 Local collapsed coordinates.

φpq(ξ1, ξ2) General expansion basis for any 2D region
φpqr(ξ1, ξ2, ξ3) General expansion basis for any 3D region

ψa
p(η1), ψb

pq(η2), ψc
pqr(η3) Modified principal functions

ψ̃a
p(η1), ψ̃b

pq(η2), ψ̃c
pqr(η3) Orthogonal principal functions

hp(ξ) 1D Lagrange polynomial of order p

LNm

i (ξ) 2D Lagrange polynomial though Nm points ξi

Pi Polynomial order in the i-th direction

Table 3.1 Notation for expansion bases.

coordinate system. We will refer to this new coordinate system as collapsed co-
ordinates and denote each ordinate as η1, η2 or η3. The collapsed coordinate η1
will also be used in the pyramidic expansion bases. Its definition is analogous
to η2. Consistent with the introduction of the collapsed coordinates we will in-
troduce two generalised tensor bases for both a modified, C0 continuous, basis
ψb

pq(η2), ψc
pqr(η3) and an orthogonal basis ψ̃b

pq(η2), ψ̃c
pqr(η3).

In section 2.3.4 we will discuss non-tensorial bases in triangular regions. Since
there is no tensorial basis it is more convenient to use the basis notation with a
single index for example φi(ξ) where ξ = (ξ1, ξ2). We, however, understand the
index i to sum over all of the two-dimensional modes. We shall also adopt the
notation LNm

i (ξ) to denote the multi-dimensional Lagrange polynomial through
Nm nodal points ξi.

Since for multi-dimensional bases the polynomial order can change in each
Cartesian direction we shall also adopt the notation Pi where the subscript de-
notes the i-th Cartesian direction.

3.1 Quadrilateral and Hexahedral Tensor Product Expansions

The extension to higher dimensions within quadrilateral or hexahedral regions
is relatively straightforward, if rather more involved than the one-dimensional
case discussed in section 2.3.

We start by defining the two-dimensional standard region, Q2, as the bi-unit
square,

Ωst = Q2 = {−1 ≤ ξ1, ξ2 ≤ 1},
and the three-dimensional standard region, Q3 as the bi-unit cuboid,

Ωst = Q3 = {−1 ≤ ξ1, ξ2, ξ3 ≤ 1}.
In general, these regions will be referred to as Ωst, which encompasses both
Q2 and Q3. Since these regions are trivially defined by a standard Cartesian
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coordinate system, the most natural and straightforward way to construct the
basis is by taking a product of the one-dimensional basis which can be thought of
as one-dimensional tensors. This type of extension may be applied equally well
to either the modal- or nodal-type basis, and therefore we shall not distinguish
between these two forms except where it is necessary or helpful.

3.1.1 Standard Tensor Product Extensions

In section 2.3.2.1 we introduced a variety of one-dimensional p-type expansion
bases which we generally referred to as φp(ξ). Three of the most useful expan-
sions are:

Modal (C0 continuous) basis
Formulation

note: Most commonly

used modal polynomial

expansion basis.
φp(ξ) =





ψa
0 (ξ) =

(
1−ξ
2

)
p = 0

ψa
p(ξ) =

(
1−ξ
2

)(
1+ξ
2

)
P 1,1

p−1(ξ) 0 < p < P

ψa
P (ξ) =

(
1+ξ
2

)
p = P.

(3.1)

Nodal (C0 continuous) basis
Formulation

note: Most commonly

used nodal polynomial

expansion basis.

φp(ξ) = hp(ξ) =
(ξ − 1)(ξ + 1)L′

P (ξ)

P (P + 1)LP (ξp)(ξ − ξp)
0 ≤ p ≤ P, (3.2)

L2 Orthogonal basis

φp(ξ) = ψ̃a
p (ξ) = Lp(ξ). (3.3)

The use of definition (3.1) for φp(ξ) corresponds to the C0 continuous hier-
archical modal expansion and is the most commonly used hp-finite element ex-
pansion in quadrilateral domains. The original hierarchical expansions for p-type
extensions bases were constructed by Peano [366]. This basis was then modified
by using the integral of the Legendre polynomial to arrive at the widely adopted
form given in equation (3.1) (see Oden [340], and Szabo and Babus̆ka [442]). Note
that the integral of the Legendre polynomial is directly related to the P 1,1

p (z)
Jacobi polynomial as seen from equation (A.9) in appendix A.

Definition (3.2) corresponds to the spectral element nodal basis originally
developed using Chebychev expansions by Patera [360]. Definition (3.3) is the
Legendre polynomial which is orthogonal in the L2 or Legendre inner product.

In all these cases the expansion was denoted by a single subscript, p, and so
may be considered as a one-dimensional “tensor.” The two- and three-dimensional
bases can be constructed by a simple product of the one-dimensional tensors in
each of the Cartesian coordinate directions, that is,

φpq(ξ1, ξ2) = φp(ξ1)φq(ξ2) 0 ≤ p, q; p ≤ P1, q ≤ P2

φpqr(ξ1, ξ2, ξ3) = φp(ξ1)φq(ξ2)φr(ξ3) 0 ≤ p, q, r; p ≤ P1, q ≤ P2, r ≤ P3.
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Figure 3.1 Construction of a two-dimensional expansion basis from the product of
two one-dimensional expansions of order P = 4. (a) Modal expansions using the
one-dimensional expansion defined in (3.1) (edge and face modes have been scaled
by a factor of 4 and 16 respectively). (b) Nodal expansion using the one-dimensional
Lagrange polynomial defined in (3.2).

We note that the polynomial order of the multi-dimensional expansions may
differ in each coordinate direction as denoted by the use of the bounds P1, P2,
and P3.

Figure 3.1 shows a diagrammatic representation of the tensor product ex-
tension to generate a two-dimensional expansion in the standard quadrilateral
region using both the modal and nodal one-dimensional expansions. The modal
basis shown in figures 3.1(a) was generated using the one-dimensional expansion
φp(ξ) = ψa

p(ξ) [see equation (3.1)] and the nodal basis expansion shown in figure
3.1(b) was generated using the one-dimensional expansion φp(ξ) = hp(ξ) [see
equation (3.2)]. The expansion modes shown in figure 3.1 represent a complete
bi-linear expansion for fourth-order polynomials in both the ξ1 and ξ2 directions.
Note that the modal expansion maintains a hierarchic form where the lower order
expansions are a subset of the higher order expansions. In contrast, each com-
ponent of the two-dimensional nodal expansion maintains the Kronecker delta
form of the Lagrange polynomial where each mode has a unit value at a specified
position within the region.
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Vertex modes

Edge modes

Face modes

Figure 3.2 Boundary/interior decomposition of the modal expansion shown in figure
3.1(a). The two-dimensional expansion is decomposed into boundary modes (vertex
and edge modes) which have support along the boundary of the region, and interior
modes which have zero support on all boundaries.

3.1.1.1 Boundary/Interior Decomposition

A significant property of the modal expansion based on definition (3.1) and the
nodal expansion based on definition (3.2) is their inherent decomposition into
boundary and interior modes. Boundary modes are defined as all the modes
which have non-zero support on the boundary of the standard region; interior
modes are all the modes which are zero on all boundaries. We recall from section
2.3.2.2 that this type of decomposition is particularly convenient when a C0

global expansion base is required since a global expansion can be generated from
the local expansion simply by matching the shape of individual boundary modes.

An illustration of the decomposition is shown in figure 3.2, where we see all
the modes shown in figure 3.1(a) decomposed into vertex, edge, and face modes.
We define vertex modes as all modes which have a unit magnitude at one vertex
and are zero at all other vertices; edge modes as all modes which have support
along one edge and are zero at all other edges and vertices; and face modes as all
modes which have magnitude along one face but are zero along all other faces,
edges, and vertices. For a two-dimensional expansion the boundary modes are
made up of the vertex and edge modes whereas in three-dimensions the bound-
ary decomposition contains the vertex, edge, and face modes. The face modes
of the three-dimensional expansions are analogous to the interior modes of the
two-dimensional expansion. It should be appreciated that an identical decompo-
sition is possible for the nodal basis shown in figure 3.1(b) under the definitions
presented above. We further note that the vertex modes of the modal expan-
sion are identical to the standard linear finite element basis for a quadrilateral
sub-domain.

3.1.1.2 Construction Procedure for the Local Expansion

The definition of the two- and three-dimensional expansion bases φpq and φpqr

as a tensor product of the one-dimensional functions defined in equations (3.1)
and (3.2) enables the boundary and interior modes to be interpreted intuitively
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as discussed in the following sections.

Two-Dimensional Expansion
Implementation

note: Definition of

Boundary and Interior

modes for 2D Tensor

product expansions.

If we consider the two-dimensional basis, φpq(ξ1, ξ2), as a two-dimensional array
spanning a similar region as the standard quadrilateral illustrated in figure 3.3(a),
then the indices of the boundary modes correspond to their location within
this array. For example, the vertex mode which has magnitude at the corner
of the quadrilateral marked A corresponds to the indices p = 0, q = 0 and so
φ0,0(ξ1, ξ2) = ψa

0 (ξ1)ψa
0 (ξ2) is the appropriate mode for this vertex of a modal

expansion. The vertex mode at p = 0, q = 0 in the previously defined nodal
expansion is φ0,0(ξ1, ξ2) = h0(ξ1)h0(ξ2).

The four vertex modes labelled A,B,C, and D are therefore described as:

Vertex A : φ0,0(ξ1, ξ2) = ψa
0 (ξ1)ψa

0 (ξ2)

Vertex B : φP1,0(ξ1, ξ2) = ψa
P1

(ξ1)ψa
0 (ξ2)

Vertex C : φ0,P2
(ξ1, ξ2) = ψa

0 (ξ1)ψa
P2

(ξ2)

Vertex D : φP1,P2
(ξ1, ξ2) = ψa

P1
(ξ1)ψa

P2
(ξ2).

The edge between A and C corresponds to the indices (p = 0, 0 < q < P ) and
so these edge modes of the expansion ψpq(ξ1, ξ2) are defined as ψ0,q(ξ1, ξ2) =
ψa

0 (ξ1)ψa
q (ξ2) (0 < q < P ). The four edges of the quadrilateral expansions are

therefore defined as:

Edge AB : φp,0(ξ1, ξ2) = ψa
p(ξ1)ψa

0 (ξ2) (0 < p < P1)

Edge CD : φp,P2
(ξ1, ξ2) = ψa

p(ξ1)ψa
P2

(ξ2) (0 < p < P1)

Edge AC : φ0,q(ξ1, ξ2) = ψa
0 (ξ1)ψa

q (ξ2) (0 < q < P2)

Edge BD : φP1,q(ξ1, ξ2) = ψa
P1

(ξ1)ψa
q (ξ2) (0 < q < P2).

Finally, the interior modes to the quadrilateral expansion are analogously defined
as:

Interior modes : φpq(ξ1, ξ2) = ψa
p(ξ1)ψa

q (ξ2) (0 < p, q; p < P1, q < P2).

An explicit listing of the nodal and modal quadrilateral basis is also given in
Appendix D.

Three-Dimensional Expansion

A similar construction process to the two-dimensional expansion is possible for
the three-dimensional basis, however, we now consider a three-dimensional array
spanning the standard hexahedral region (also shown in figure 3.3). For this case
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Figure 3.3 Definition of the array indices for the (a) two-dimensional, and (b)
three-dimensional tensor expansions.

the modes within the face ABCD correspond to the indices (0 < p < P, 0 < q <
P, r = 0) and so these face modes are defined as

φp,q,0(ξ1, ξ2, ξ3) = ψa
p(ξ1)ψa

q (ξ2)ψa
0 (ξ3) (0 < p < P1, 0 < q < P2).

To derive the same expansion for the nodal expansion we simply replace ψa
p(ξ)

with hp(ξ). For a full listing of the nodal and modal hexahedral bases see Ap-
pendix D.

3.1.2 Polynomial Space of Tensor Product Expansions

The expansions φpq(ξ1, ξ2) and φpqr(ξ1, ξ2, ξ3) defined using the tensor product of
any of the polynomials ψa

p(ξ), hp(ξ), Lp(ξ) [see equations (3.1), (3.2), and (3.3)]
all span the same multi-dimensional polynomial space. This polynomial space is
mathematically defined in two dimensions as

φpq(ξ1, ξ2) ⊆ PP (Q2) = span{ξp
1 ξ

q
2}(p,q)∈Υ

Υ = {(p, q)|0 ≤ p ≤ P1, 0 ≤ q ≤ P2},
and in three dimensions as

φpqr(ξ1, ξ2, ξ3) ⊆ PP (Q3) = span{ξp
1 ξ

q
2 ξ

r
3}(pqr)∈Υ

Υ = {(p, q, r)|0 ≤ p ≤ P1, 0 ≤ q ≤ P2, 0 ≤ r ≤ P3}.
In two dimensions, it is normal to consider the polynomial spaces in terms of Pas-
cal’s triangle. Figure 3.4 shows, for the expansion φpq(ξ1, ξ2), the space spanned
when P1 = 4 and P2 = 3 as well as the hierarchical modes used in this expansion.
The definition of the set Υ indicates the range over which the expansion modes
φpq(ξ1, ξ2), φpqr(ξ1, ξ2, ξ3) must be assembled if they are to span the complete
polynomial basis, (that is, 0 ≤ p ≤ P1, 0 ≤ q ≤ P2, 0 ≤ r ≤ P3). Therefore, for
an expansion to span the complete space up to ξP1

1 ξP2

2 ξP3

3 requires (P1+1)(P2+1)
modes in two dimensions, and (P1+1)(P2+1)(P3+1) modes in three dimensions.
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Figure 3.4 Polynomial space in terms of the Pascal’s triangle of the full tensor product
quadrilateral expansion with P1 = 4 and P2 = 3.

A broad range of modal expansions is possible due to the variety of combina-
tions of edge, face, and interior modes. In the most general case we can describe
a modal expansion which has a boundary/interior decomposition with an in-
dependent parameter to bound the modes along every edge, two independent
parameters to bound the modes within every face, and another three parameters
to bound the interior modes. This type of flexibility is desirable as it provides a
relatively natural way to vary the expansion order from one elemental domain
to another while maintaining C0 continuity. The adaptivity of the polynomial
space may also be introduced using the non-conforming techniques as discussed
in chapter 7.

3.1.2.1 Serendipity Expansion

The hierarchical nature of the modal expansion gives rise to a greater flexibility
in that it permits the use of a reduced number of expansion modes as compared
with those in the full tensor space. One widely used modified expansion is the
serendipity expansion which does not include the full tensor product of interior
modes. In this expansion we only use the modes necessary to produce a horizontal
level of the Pascal’s triangle, that is,

PP (Q2) = span{ξp
1 ξ

q
2}(pq)∈Υ

Υ = {(p, q)| 0 ≤ p, q ≤ P ; p+ q ≤ P}.
This linear space is the natural space for a p-type expansion in a triangular region.
The quadrilateral expansion cannot be reduced exactly to this space although
it can come very close. To achieve this we retain all the boundary modes and
combine them with the interior modes up to the restriction p+ q ≤ P − 2. The
Pascal triangle and modal shapes for this expansion when P1 = P2 = P = 4
are shown in figure 3.5. We observe that the reduced quadrilateral expansion is
therefore almost identical to the triangular polynomial space except for the two
polynomials ξ41ξ2 and ξ1ξ

4
2 which are introduced by the edge modes and cannot

be removed because they are required for completeness of the expansion.
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Figure 3.5 Pascal triangle and modal shapes for a P = 4 serendipity expansion using
all the boundary modes with interior modes supported up to the limit p + q ≤ P − 2
(recall that the interior mode is a polynomial of the form ξ21ξ

2
2).

It is also possible to construct a serendipity nodal expansion which spans
a similar space, but this requires modification of the basis definition to permit
different order Lagrange polynomials in the interior of the expansion (see[75, 244,
510]] for further discussion). The construction of the Lagrange polynomial is such
that a square number of modes are always needed to make a complete expansion
and so the polynomial space is slightly richer than the space illustrated in figure
3.5. However, a compatible nodal basis which does match this serendipity space
may also be generated using a combination of the nodal and modal expansions
[484]. This can destroy some of the inherent efficiency of the full nodal tensor
product but permits greater expansion flexibility between domains.

3.2 Generalised Tensor Product Modal Expansions

To extend the tensor product expansion in quadrilateral and hexahedral domains
discussed in section 3.2 to simplex regions such as triangular and tetrahedral re-
gions we need to generalise the tensor product expansion concept. In this section
we shall introduce modal expansions in subdomains typically associated with
unstructured discretisation which in two dimensions typically means the trian-
gular region, and in three dimensions includes the tetrahedral region. A natural
extension to the construction of a tetrahedral expansion will also lead to a uni-
fied basis which includes pentahedral regions such as prismatic and pyramidic
shapes as well as the hexahedral modal expansion discussed previously. We shall
refer to the bundle of mixed shapes as hybrid regions.

The use of triangular or tetrahedral spectral/hp element methods in computa-
tional fluid dynamics has been relatively limited when compared to quadrilateral
and hexahedral spectral/hp element discretisations. An important consideration
when using triangular or tetrahedral expansion for time-dependent computa-
tions, which typically arise in fluid dynamics, is the numerical efficiency of the
algorithm in the context of cost per time step. To be competitive, a triangular
expansion must be as numerically efficient as the quadrilateral expansion. Since
a great deal of the efficiency of the quadrilateral or hexahedral expansion (partic-
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ularly at larger polynomial orders) arises from the tensor product construction
we would like to use a similar procedure to construct expansions within the
triangular or tetrahedral domains.

An orthogonal, generalised tensor product, two-dimensional basis has been
proposed by several authors the first of which we believe to be Proriol in 1957
[383]. This basis has also been independently proposed by Karlin & McGregor
[257] and Koornwinder [273] (who also constructed orthogonal polynomials for
different kinds of domains) as well as more recently by Dubiner [142]. These
expansions are also known to be solutions to a singular Sturm-Liouville problem
[74, 282, 355, 480, 493]. Dubiner’s paper also suggested a modified basis for
C0 continuous expansions and discussed the three-dimensional extension of the
orthogonal expansion to a tetrahedral region. The derivation of a C0 continuous
expansion in a tetrahedral region based on Dubiner orthogonal expansion was
first presented by Sherwin & Karniadakis [420, 428]. Both the orthogonal and
C0 expansions were presented in a unified approach for hybrid elemental regions
by Sherwin in [421]. We shall be adopting the unified approach in this section
and we will discuss non-tensorial expansions for simplex regions in section 2.3.4.

An interesting characteristic of these expansions is that the individual expan-
sion modes are not rotationally symmetric in the standard regions. Rotational
symmetry has historically been an important consideration when constructing
unstructured polynomial expansion bases. The desire for rotational symmetry
naturally motivates the use of the rotationally invariant barycentric coordinate
systems (see section 3.2.1.3). However, the use of the barycentric coordinate
system can destroy much of the numerical efficiency associated with the stan-
dard tensor product expansion bases. One way to recover this efficiency is to
design a coordinate system based on the mapping of a square to a triangle gen-
erating a collapsed coordinate system. The use of a collapsed coordinate system
as discussed in 3.2.1 regains some of this efficiency but inherently destroys the
rotational symmetry of each mode of the expansion. Nevertheless, these expan-
sions span an identical polynomial space as the traditional unstructured expan-
sions using barycentric coordinates. Therefore, in the absence of any integration
error they are equivalent to any other polynomial expansion bases used in a
Galerkin approximation. The lack of rotational symmetry does not effect the
multi-domain construction of the triangular expansion although for tetrahedral
domains it does impose a restriction on orientation of the elemental regions which
can be trivially satisfied as will be explained in section 4.2.1. Amongst other ap-
plications, these expansion bases have been applied to the incompressible and
compressible Navier-Stokes equations (for example see [420, 429, 430, 409, 480,
306]) as well as geophysical fluid dynamics problems [492].

Other modal expansions which are available in the literature are included
in the book by Szabo and Babus̆ka [442] which documents a modal triangular
and tetrahedral expansion based on a barycentric coordinate system (see section
3.2.1.3). These expansions are rotationally non-symmetric and have been applied
to structural mechanics problems. Webb and Abouchacra [486] have also devel-
oped a hierarchical triangular expansion based on Jacobi polynomials, which



Ch. 3 Multi-dimensional Expansion Bases 89

CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

ξ2

(0,0)

(−1,1)

(1,−1)(−1,−1)

ξ1

a) b)
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

ξ2

(0,0)

(−1,1)

(1,−1)(−1,−1)

ξ1

(1,1)

Figure 3.6 Standard regions for the (a) quadrilateral, and (b) triangular expansion
in terms of the Cartesian coordinates ξ1, ξ2.

is also rotationally non-symmetric and uses a barycentric coordinate system.
Finally, Zambusch [505] has proposed a symmetric hierarchical expansion for
triangular and tetrahedral regions based on the barycentric coordinates system
but these bases depend on defining a new polynomial space; this basis has also
been applied in the area of structural mechanics.

To understand the derivation of the generalised tensor product modal ex-
pansion we initially require the definition of a new collapsed coordinate system
as introduced in section 3.2.1. Using the collapsed coordinate system we can
then construct orthogonal polynomial expansions within both simplex regions
and the standard quadrilateral and hexahedral regions as discussed in section
3.2.2. Finally, since the orthogonal expansions cannot easily be tessellated into
C0 expansions, we discuss in section 3.2.3 a set of modified expansions which
have an interior and boundary decomposition making them suitable for use in a
global C0 continuous expansion.

3.2.1 Coordinate Systems

In the structured expansions discussed in section 3.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions
based on a Cartesian coordinate system. The one-dimensional expansion was de-
fined between constant limits and therefore an implicit assumption of the tensor
extension was that the coordinates in the two-dimensional region were bounded
between constant limits. As illustrated in figure 3.6, within the standard quadri-
lateral region, the Cartesian coordinates (ξ1, ξ2) are bounded by constant limits,
that is,

Q2 = {(ξ1, ξ2)| − 1 ≤ ξ1, ξ2 ≤ 1}.
However, as shown in figure 3.6(b), this is not the case in the standard triangular
region as the bounds of the Cartesian coordinates (ξ1, ξ2) are dependent upon
each other, that is,

T 2 = {(ξ1, ξ2)| − 1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0}.

Therefore, to develop a suitable tensorial type basis within unstructured regions,
such as the triangle, we need to develop a coordinate system where the local coor-
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Figure 3.7 Triangle to rectangle transformation.

dinates have independent bounds. The advantage of such a system is that we can
then define one-dimensional functions upon which we can construct our multi-
domain tensorial basis. It also defines an appropriate system upon which we can
perform important numerical operations such as integration and differentiation,
as discussed in sections 2.4.1 and 2.4.2.

3.2.1.1 Collapsed Two-Dimensional Coordinate System

A suitable coordinate system, which describes the triangular region between
constant independent limits, is defined by the transformation

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1 (3.4)

η2 = ξ2,

and has the inverse transformation

ξ1 =
(1 + η1)(1 − η2)

2
− 1 (3.5)

ξ2 = η2.

These new local coordinates (η1, η2) define the standard triangular region by

T 2 = {(η1, η2)| − 1 ≤ η1, η2 ≤ 1}.

The definition of the triangular region in terms of the coordinate system
(η1, η2) is identical to the definition of the standard quadrilateral region in terms
of the Cartesian coordinates (ξ1, ξ2). This suggests that we can interpret the
transformation (3.4) as a mapping from the triangular region to a rectangular one
as illustrated in figure 3.7. For this reason, we shall refer to the coordinate system
(η1, η2) as the collapsed coordinate system. The transformation (3.4) maps the
vertical lines in the rectangular domain (lines of constant η1) onto lines radiating
out of the top vertex (ξ1 = −1, ξ2 = 1) in the triangular domain. The triangular
region is now described by a “ray” coordinate, η1, and the standard horizontal
coordinate by (ξ2 = η2). Another consequence of the transformation is that the
“ray” coordinate (η1) is multi-valued at (ξ1 = −1, ξ2 = 1). However, we can show
that η1 is bounded at this point by making a change of variables to (ǫ, θ) where
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ξ1 = −1 + ǫ sin θ, ξ2 = 1 − ǫ cos θ. This change of variables simply expresses the
Cartesian coordinates ξ1, ξ2 in terms of a cylindrical system (ǫ, θ) centered on the
singular points (ξ1 = −1, ξ2 = 1), where θ is defined in an anti-clockwise sense
from the vertical, as indicated in figure 3.7. Substituting these values into the
definition of η1 given by equation (3.4) we can determine the limiting behavior
of the singularity as ǫ→ 0, that is,

η1|ξ1=−1,ξ2=1 = 2
1 − 1 + ǫ sin θ

1 − 1 + ǫ cos θ
− 1 = 2 tan θ − 1.

Since 0 ≤ θ ≤ π/4 we know that 0 ≤ tan θ ≤ 1 and so −1 ≤ η1|ξ1=−1,ξ2=1 ≤ 1.
Although the introduction of a singularity may seem unfavorable, such singular-
ities naturally occur in cylindrical and spherical coordinate systems.

This type of coordinate system is sometimes referred to as Duffy coordinates
[143] and is used in boundary element methods to handle the singular integrals.

3.2.1.2 Collapsed Three-Dimensional Coordinate Systems

The interpretation of a triangle to rectangle mapping of the two-dimensional
local coordinate system, as illustrated in figure 3.7, is helpful in the construction
of a new coordinate system for three-dimensional regions. If we consider the local
coordinates (η1, η2) as independent axes (although they are not orthogonal) then
the coordinate system spans a rectangular region. Therefore, if we start with a
hexahedral region and apply the inverse transformation (3.5) we can derive a
new local coordinate system in the tetrahedral region T 3 in three dimensions,
where T 3 is defined as:

T 3 = {−1 ≤ ξ1, ξ2, ξ3; ξ1 + ξ2 + ξ3 ≤ −1}.
To reduce the hexahedron to a tetrahedron requires repeated application of

the transformation (3.5) as illustrated in figure 3.8. Initially, we consider a hexa-
hedral domain defined in terms of the local coordinate system (η1, η2, η3) where
all three coordinates are bounded by constant limits, that is, (−1 ≤ η1, η2, η3 ≤
1). Applying the rectangle-to-triangle transformation (3.5) in the (η1, η3) plane
we obtain a new ordinate, η1, such that

η1 =
(1 + η1)(1 − η3)

2
− 1

η3 = η3.

Treating the coordinates (η1, η2, η3) as independent, the region which originally
spanned a hexahedral domain is mapped to a triangular prism. If we now apply
transformation (3.5) in the (η2, η3) plane, introducing the ordinates ξ2, ξ3 defined
as

ξ2 =
(1 + η2)(1 − η3)

2
− 1,

ξ3 = η3,

we see that the coordinates (−1 ≤ η1, ξ2, ξ3 ≤ 1) span a region of a square-based
pyramid. The third and final transformation to reach the tetrahedral domain is
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Figure 3.8 Hexahedron to tetrahedron transformation by repeatedly applying the
rectangle-to-triangle mapping (3.5).

slightly more subtle, as to reduce the pyramidic region to a tetrahedron we need
to apply the mapping in every square cross-section parallel to the (η1, ξ2) plane.
This means using the transformation (3.5) in the (η1, ξ2) plane to define the final
ordinate (ξ1) as

ξ1 =
(1 + η1)(1 − η2)

2
− 1

ξ2 = ξ2.

If we choose to define the coordinate of the tetrahedron region (ξ1, ξ2, ξ3) as the
orthogonal Cartesian system, then by determining the hexahedral coordinates
(η1, η2, η3) in terms of the orthogonal Cartesian system, we obtain

η1 = 2
(1 + ξ1)

(−ξ2 − ξ3)
− 1, η2 = 2

(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3, (3.6)

which is a collapsed coordinate system for the tetrahedral domain, and is bounded
by constant limits, so the region T 3 can be defined as

T 3 = {−1 ≤ η1, η2, η3 ≤ −1}.

We also note that when ξ3 = −1 this system reduces to the two-dimensional
system defined in (3.4).
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Table 3.2 The local collapsed coordinates which have constant bounds within the
standard region may be expressed in terms of the Cartesian coordinates ξ1, ξ2, ξ3. Each
region may be defined in terms of the local coordinates as having a lower bound of
−1 ≤ ξ1, ξ2, ξ3 and upper bound as indicated in the table. Each region and the planes
of constant local coordinates are shown in figure 3.9.

Region Upper bound Local collapsed coordinate

Hexahedron ξ1, ξ2, ξ3 ≤ 1 ξ1 ξ2 ξ3

Prism ξ1 ≤ 1, ξ2 + ξ3 ≤ 0 η1 = 2(1+ξ1)
(1−ξ3)

− 1 ξ2 ξ3

Pyramid ξ1 + ξ3, ξ2 + ξ3 ≤ 0 η1 = 2(1+ξ1)
(1−ξ3)

− 1 η2 = 2(1+ξ2)
(1−ξ3) − 1 η3 = ξ3

Tetrahedron ξ1 + ξ2 + ξ3 ≤ −1 η1 = 2(1+ξ1)
(−ξ2−ξ3) − 1 η2 = 2(1+ξ2)

(1−ξ3) − 1 η3 = ξ3

By analogy to this technique, if we had chosen to define the coordinates
in either the pyramidic or prismatic region as the orthogonal Cartesian system
then evaluating the hexahedral coordinates in terms of these coordinates would
generate a collapsed coordinate system for these domains. Table 3.2 shows the
local collapsed coordinate systems in all of the three-dimensional regions. A
diagrammatic representation of the local collapsed coordinate system is shown
in figure 3.9.

3.2.1.3 Barycentric Coordinate Systems

Barycentric coordinate systems otherwise known as area/triangular or volume/tet-
rahedral coordinates, have historically been used in unstructured domains be-
cause of their rotational symmetry. Unlike the quadrilateral or hexahedral re-
gions, in a simplex region such as the triangle and tetrahedron, maintaining
symmetry requires an extra (dependent) coordinate which makes the tensor pro-
cess construction of expansions, as discused in sections 3.1 and 3.2, very difficult
if not impossible. Barycentric coordinates will however be useful in defining the
rotationally symmetric non-tensorial expansions discussed in this section. We
also define the relationship between the barycentric coordinates and volume co-
ordinates and the collapsed coordinate systems discussed in sections 3.2.1.1 and
3.2.1.2

The area coordinate system is illustrated in figure 3.10(a) for the standard
triangle. Any point in the triangle is described by three coordinates l1, l2, and l3,
which can be interpreted as the ratio of the areas A1, A2 and A3 over the total
area A = A1 +A2 +A3, that is,

l1 =
A1

A
, l2 =

A2

A
, l3 =

A3

A
.
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Figure 3.9 Planes of constant value of the local collapsed Cartesian coordinate sys-
tems in the hexahedral, prismatic, pyramidic, and tetrahedral domains. In all but the
hexahedral domain, the standard Cartesian coordinates ξ1, ξ2, ξ3 describing the re-
gion have an upper bound which couples the coordinate system as shown in table 3.2.
The local collapsed Cartesian coordinate system η1, η1, η2, η3 represents a system of
non-orthogonal coordinates which are bounded by a constant value within the region.

Therefore l1, l2, and l3 have a unit value at the vertices marked 1, 2 and 3 in figure
3.10(a), respectively. By definition these coordinates satisfy the relationship:

l1 + l2 + l3 = 1,

and they can be expressed in terms of Cartesian coordinates ξ1, ξ2 as:

l1 = 1
2 (1 − ξ1) − 1

2 (1 + ξ2),

l2 = 1
2 (1 + ξ1),

l3 = 1
2 (1 + ξ2).

The two-dimensional collapsed coordinate system was defined in sections 3.2.1.1
and 3.2.1.2 as
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Figure 3.10 (a)The area coordinate system in the standard triangular region. Each
coordinate l1, l2, and l3 can be interpreted as the ratio of areas A1, A2, and A3 over the
total area. (b) The standard tetrahedral region for the definition of volume coordinates.

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1 and η2 = ξ2,

which can also be written in terms of the area coordinates as:

η1 =
2l2

1 − l3
− 1 =

l2 − l1
1 − l3

, η2 = 2l3 − 1.

A similar construction follows for volume coordinates l1, l2, l3, l4, which are
defined as having a unit value at the vertices marked 1, 2, 3, 4 in figure 3.10(b). In
terms of the local Cartesian coordinates the volume coordinate system is defined
as:

l1 =
−(1 + ξ1 + ξ2 + ξ3)

2
, l2 =

(1 + ξ1)

2
,

l3 =
(1 + ξ2)

2
, l4 =

(1 + ξ3)

2
.

Finally, the three-dimensional collapsed coordinate system for the tetrahedron
can be defined in terms of the volume coordinates as:

η1 =
2l2

(1 − l3 − l4)
=

l2 − l1
(1 − l3 − l4)

,

η2 =
2l3

(1 − l4)
− 1, η3 = 2l4 − 1.

3.2.2 Orthogonal Expansions

We have previously seen in chapter 2, section 2.3.2.1 that there are many consid-
erations which motivate a good expansion basis. Typically, we are interested in
developing a computationally efficient expansion which demonstrates attractive
numerical properties such as matrix conditioning or, in the case of convection
problems, appropriate explicit time step restrictions (see chapter 6). A reasonable
starting point in developing a modal multi-dimensional expansion is to construct



96 Spectral/hp Element Methods for CFD Ch. 3

a set of polynomial expansions which are orthogonal in the Legendre inner prod-
uct (or indeed any desired inner product) over each desired subdomain shape.

In the following section we will discuss a set of orthogonal polynomials in hy-
brid regions that have a tensor product form [383, 257, 273, 142]. These orthogo-
nal expansions have also been shown to be solutions to singular Sturm-Liouville
problems. The first derivation of the Sturm-Liouville problem in a triangle was
by Krall and Sheffer in 1967 [282]. Subsequently, this result has also been re-
ported by Owens [355], Wingate & Taylor [493], Warburton [480], and Braess &
Schwab [74]. The last three publications also deal with tetrahedral domains.

We saw in section 3.1 how the structured expansions for a quadrilateral and
hexahedral domain can be constructed using a product of two one-dimensional
tensors. When we use the collapsed coordinate systems introduced in section
3.2.1, we find that a similar extension process is possible for all the unstructured
domains using a warped [142] or generalised product involving tensors of two and
three dimensions. Unlike the structured two-dimensional tensor product form,
where the expansion is constructed from the same one-dimensional basis, the L2

orthogonal expansion has the form

φpq(ξ1, ξ2) = Lp(ξ1)Lq(ξ2),

where a more general product is used combining a one-dimensional tensor ψ̃a
p(z)

with a two-dimensional tensor of the form ψ̃b
pq(z) that is,

φpq(ξ1, ξ2) = ψ̃a
p(η1)ψ̃b

pq(η2).

Figure 3.11 illustrates the construction of the two-dimensional expansion modes
using this more general form. To generate each mode the function ψ̃a

p(η1) is

combined with ψ̃b
pq(η2). However, unlike the quadrilateral expansion, ψ̃b

pq(η2)

now has a different form for every value of p of the principal function ψ̃a
p(η1).

This form still maintains the numerical efficiencies which can be achieved
from the one-dimensional nature of the expansion using the sum-factorisation
process discussed in section 4.1.6. We shall refer to the functions ψ̃a

p (z) and

ψ̃b
pq(z) as well as a third function ψ̃c

pqr(z) as the orthogonal principal functions

[421], where ψ̃c
pqr(z) is required for the three-dimensional expansions. In section

3.2.3 we shall introduce a modified version of the principal functions which are
more suitable for multiple domain expansions.

3.2.2.1 Orthogonal Expansions in Hybrid Domains Based on One Dimensional
Principal Functions

Recalling that the function Pα,β
p (z) denotes the pth-order Jacobi polynomial

introduced in section 2.3.3.1 (see also Appendix A) the principal functions, ψ̃a
p(z),

ψ̃b
pq(z), ψ̃c

pqr(z), for orthogonal expansions in hybrid domains are:

ψ̃a
p(z) = P 0,0

p (z), ψ̃b
pq(z) =

(
1−z
2

)p
P 2p+1,0

q (z),
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 φpq(ξ1,ξ2) = ψp(η1) ψpq(η2)
a b~ ~

Figure 3.11 Construction of two-dimensional expansion modes φpq(ξ1, ξ2) within a

triangular region using the product of a one-dimensional tensor ψ̃a
p (η1(ξ1, ξ2)) and a

two-dimensional tensor ψ̃b
pq(η2(ξ2)).

ψ̃c
pqr(z) =

(
1−z
2

)p+q
P 2p+2q+2,0

k (z).

The two-dimensional expansions in terms of the principal functions are defined
as: Formulation

note: Definition of or-

thogonal modal expan-

sions in 2D standard

hybrid regions.

Quadrilateral expansion: φpq(ξ1, ξ2) = ψ̃a
p(ξ1)ψ̃a

q (ξ2),

Triangular expansion: φpq(ξ1, ξ2) = ψ̃a
p(η1)ψ̃b

pq(η2),

where

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

are the two-dimensional collapsed coordinates illustrated in figure 3.7. The shape
of all the triangular modes for a fourth-order polynomial expansion are shown
in figure 3.11.

The three-dimensional expansions are defined in terms of the principal func-
tions as: Formulation

note: Definition of or-

thogonal modal expan-

sions in 3D standard

hybrid regions.

Hexahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(ξ1) ψ̃a

q (ξ2) ψ̃a
r (ξ3),

Prismatic expansion: φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(η1) ψ̃a

q (ξ2) ψ̃b
pr(ξ3),

Pyramidic expansion: φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(η1) ψ̃a

q (η2) ψ̃c
pqr(η3),

Tetrahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψ̃a
p(η1) ψ̃b

pq(η2) ψ̃c
pqr(η3),

where

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η1 =

2(1 + ξ1)

(1 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3,

are the three-dimensional collapsed coordinates illustrated in figure 3.9.
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Figure 3.12 Location of the zeros of the Jacobi polynomial Pα,0

i (z) (i ≤ 7) in the
interval [−1, 1] for integer values of α, 0 ≤ α ≤ 15. For increasing α we see there is a
declustering of the zeros away from the point z = 1.

These expansions are all polynomials in terms of both their local collapsed
coordinates and the Cartesian coordinates. The structured expansions in the
quadrilateral and hexahedral domains are simply standard tensor products of
Legendre polynomials in terms of Cartesian coordinates since P 0,0

p (z) = Lp(z).
The development of unstructured expansions using the local collapsed coordinate
systems is linked to the use of the more general functions ψ̃b

pq(z) and ψ̃c
pqr(z).

These functions both contain factors of the form
(

1−z
2

)n
which are necessary

to keep the expansions as polynomials in terms of the Cartesian coordinates
(ξ1, ξ2, ξ3). For example, the coordinate η1 in the triangular expansion necessi-

tates the use of the function ψ̃b
pq(η2) (where η2 = ξ2) which introduces a factor

of
(

1−ξ2

2

)p

. The product of this factor with ψ̃a
p(η1) is a polynomial function in ξ1

and ξ2. A similar argument supports the introduction of the local coordinate η2 in
the prismatic expansions. The local coordinate system in the pyramidic domains
introduces a second collapsed coordinate η1 which requires the introduction of
the principal function ψ̃c

pqr(η3). The expansion in the tetrahedral regions uses

the additional collapsed coordinate η1 = 2(1+ξ1)
(−ξ2−ξ3)

−1 (recall that this is the same

as the two-dimensional definition when ξ3 = −1). Noting that −ξ2 − ξ3 can be
expressed in terms of η2 and η3 as

−ξ2 − ξ3 =
1

2
(1 − η2)(1 − η3),

we see that the polynomial ψ̃a
p(η1) becomes a polynomial in ξ1, ξ2, and ξ3 if we

multiply it by the factor (1 − η2)p(1 − η3)p. This factor is incorporated in the

principal functions ψ̃b
pq(η2) and ψ̃c

pqr(η3).
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The principal functions ψ̃b
pq(η2) and ψ̃c

pqr(η3) also contain a Jacobi polynomial

of the form Pα,0
i (z). As can be seen from figure 3.12, for increasing values of α this

polynomial has zeros which are declustered away from the point z = +1. As noted
in [484] this declustering is important in maintaining the linear independence of
the expansion leading to well-conditioned numerical systems.

3.2.2.2 Demonstration of Orthogonality

To gain an insight into the use of the Jacobi polynomial Pα,0(z) in defining the

principal functions ψ̃b
pq(z) and ψ̃c

pqr(z) we shall demonstrate the orthogonality of
the triangular and tetrahedral expansion in the Legendre inner product, that is,

∫

Ωst

φpqr(ξ1, ξ2, ξ3)φijk(ξ1, ξ2, ξ3) dξ1dξ2dξ3 (3.7)

where Ωst denotes the appropriate standard region, i.e. triangle (T 2) or tetrahe-
dron (T 3).

Orthogonality of the Triangular Expansion

Considering the triangular expansion in the standard region

φpq(ξ1, ξ2) = ψ̃a
p(η1)ψ̃b

pq(η2),

equation (3.7) can be written in terms of the local coordinate system η1, η2 as:

∫ 1

−1

∫ −ξ2

−1

φpqφijdξ1 dξ2 =

∫ 1

−1

∫ 1

−1

ψ̃a
p(η1)ψ̃b

pq(η2)ψ̃a
i (η1)ψ̃b

ij(η2)Jdη1dη2,

where

J =
∂(ξ1, ξ2)

∂(η1, η2)
=

1 − η2
2

.

Since the expansion is a product of polynomials in terms of the local coordinates
η1, η2 and because the Jacobian is only a function of η2, the inner product can
be expressed in terms of two one-dimensional integrals:

∫ 1

−1

ψ̃a
p ψ̃

a
i dη1

∫ 1

−1

ψ̃b
pqψ̃

b
ij

(
1−η2

2

)
dη2. (3.8)

Recalling the definitions of the principal functions,

ψ̃a
p(η1) = P 0,0

p (η1), ψ̃b
pq(η2) =

(
1−η2

2

)p
P 2p+1,0

q (η2)

we see that the first integral in equation (3.8) contains the standard Legendre
polynomials (P 0,0

p (z) = Lp(z)) which are orthogonal in the interval [−1, 1]. Ac-

cordingly, this integral is zero unless p = i when it is equal to 2
2p+1 . The second

integral can be written in full as
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∫ 1

−1

(
1−η2

2

)p
P 2p+1,0

q (η2) ·
(

1−η2

2

)i
P 2i+1,0

j (η2)
(

1−η2

2

)
dη2.

The Jacobi polynomial P 2p+1,0
r (η2) is orthogonal in this interval with respect to

the weight function
(

1−η2

2

)(2p+1)
[see equation (A.7) in Appendix A], and there-

fore if p = i the integral is zero except when q = j. However, if p 6= i the first
integral in equation (3.8) is necessarily zero and so the expansion φpq(ξ1, ξ2) is
orthogonal to φij(ξ1, ξ2) in the standard region T 2.

Orthogonality of the Tetrahedral Expansion

Orthogonality of the tetrahedral expansions follows from a similar construction
to that previously shown for the triangular expansions. Expressing the basis
φpqr in terms of its product form of the principal functions, the Legendre inner
product (3.7) can be written as:

∫ 1

−1

∫ −ξ3

−1

∫ −1−ξ2−ξ3

−1

φpqrφijk dξ1 dξ2 dξ3 =

∫ 1

−1

∫ 1

−1

∫ 1

−1

ψ̃a
p ψ̃

b
pqψ̃

c
pqr ψ̃

a
i ψ̃

b
ijψ̃

c
ijkJ dη1dη2dη3,

where η1, η2, η3 are the three-dimensional collapsed coordinates and

J =
∂(ξ1, ξ2, ξ3)

∂(η1, η2, η3)
=

(
1 − η2

2

) (
1 − η3

2

)2

.

Since the basis is a product of the three principal functions and the Jacobian
J can also be expressed as a product of two functions in terms of the local
coordinates, the integral can be written as a product of the three one-dimensional
integrals of the form:

∫ 1

−1

ψ̃a
p ψ̃

a
i dξ1 7→

∫ 1

−1

P 0,0
p (η1)P 0,0

i (η1)dη1 (3.9a)

∫ 1

−1

ψ̃b
pqψ̃

b
ij

(
1−η2

2

)
dξ2 7→

∫ 1

−1

P 2p+1,0
p (η2)P 2i+1,0

i (η2)
(

1−η2

2

)p+i+1
dη2 (3.9b)

∫ 1

−1

ψ̃c
pqrψ̃

c
ijk

(
1−η3

2

)2
dξ3 7→

∫ 1

−1

P 2p+2q+2,0
r (η3) ·

P 2i+2j+2,0
k (η3)

(
1−η3

2

)(p+q)+(i+j)+2
dη3. (3.9c)

As discussed in the previous section, equation (3.9a) is the inner product of the
Legendre polynomial which is zero if p 6= i. The integral in equation (3.9b) is
zero if q 6= j when p = i since when p = i this integral becomes the orthogonality
relation for the Jacobi polynomials P 2p+1,0

p (η1) as given in Appendix A. Finally,
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integral (3.9c) is zero if r 6= k when p = i and q = j because the integral becomes
the orthogonality relation for the Jacobi polynomial P 2p+2q+2,0

r (η3).
We can appreciate that, unlike the structured hexahedral expansion where

each one-dimensional integral gives an independent orthogonal relation, the tetra-
hedral expansion requires the orthogonality of the first integral to support the
second, and the orthogonality of the first and second integral to support that
of the third integral. This has implications for the ordering of the modes when
dealing with the modified expansion in section 3.2.3.

3.2.2.3 Singular Sturm-Liouville Equations of the Orthogonal Expansions

We have previously noted that the Jacobi polynomials are the solution to a sin-
gular Sturm-Liouville problem. This is significant, since as discussed in section
2.5.2, the convergence of a numerical approximation based on expansion bases
which satisfy singular Sturm-Liouville problems demonstrates spectral conver-
gence if the approximated function is sufficiently smooth. The natural extension
of this one-dimensional result to a quadrilateral region is the tensor product
expansion

φpq(ξ1, ξ2) = P 0,0
p (ξ1)P 0,0

q (ξ2)

which satisfies the singular Sturm-Liouville equation

∂

∂ξ1

[
(1 − ξ21)

∂φpq

∂ξ1

]
+

∂

∂ξ2

[
(1 − ξ22)

∂φpq

∂ξ2

]
+ λpq φpq = 0 (3.10)

where λpq = p(p + 1) + q(q + 1). This equation is invariant under all rotations
and reflections in the square. A defining feature of this equation, as discussed
in [493], is that along each edge (ξ1 = ±1, ξ2 = ±1) where the derivative is
tangential, there is a quadratic coefficient which goes to zero on all sides not
tangential to the direction of differentiation. These features are important to
make the differential operator self-adjoint.

The extension from a one-dimensional segment to a two-dimensional quadri-
lateral region is relatively intuitive. However, not quite as intuitive is the sin-
gular Sturm-Liouville for the triangular region as investigated in [282, 355, 480,
493]. We start our discussion by noting that the orthogonal expansion in a tri-
angle

φpq(ξ1, ξ2) = P 0,0
p (η1)

(
1 − η2

2

)p

P 2p+1,0
q (η2) (3.11)

satisfies the singular Sturm-Liouville equation

2

(1 − η2)

{
∂

∂η1

[
(1 − η2

1)
∂φpq

∂η1

]

+
∂

∂η2

[
(1 − η2

2)
(1 − η2)

2

∂φpq

∂η2

]}
+ λpq φpq = 0, (3.12)

where



102 Spectral/hp Element Methods for CFD Ch. 3

λpq = (p+ q)(p+ q + 2) and η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2.

We see from equation (3.12) that the form of the triangular singular Sturm-
Liouville equation, similar to equation (3.10), contains quadratic or higher coef-
ficients which are zero on the boundary of the region defined along η1 = ±1, η2 =
±1.

To demonstrate that the orthogonal basis (3.11) satisfies equation (3.12) we
follow the formulation used by Warburton [480] and initially consider the second
differential term in equation (3.12) which on substitution of expansion (3.11) can
be written as

2

(1 − η2)

∂

∂η2

[
(1 − η2

2)
(1 − η2)

2

∂φpq

∂η2

]
=

2P 0,0
p

(1 − η2)

∂

∂η2

[
−p(1 + η2)

(
1−η2

2

)p+1
P 2p+1,0

q + (1 − η2
2)

(
1−η2

2

)p+1 ∂P 2p+1,0
q

∂η2

]
=

(
1−η2

2

)p
P 0,0

p

[
(1 − η2

2)
∂2P 2p+1,0

q

∂η2
2

+ (−(2p+ 1) − (2p+ 3)η2)
∂P 2p+1,0

q

∂η2

−p(p+ 2)P 2p+1,0
q −

(
2

1 − η2

)
p(p+ 1)P 2p+1,0

q

]
. (3.13)

Now if we apply relationship (A.2) expressed in terms of the Jacobi polyno-
mial P 0,0

p (η), then we observe that the first differention term in equation (3.12)
can be written

2

(1 − b)

∂

∂η1

[
(1 − η2

1)
∂φpq

∂η1

]
=

(
1 − η2

2

)p−1

P 2p+1,0
q (η2)

∂

∂η1

[
(1 − η2

1)
∂P 0,0

p

∂η1

]

= −
(

2

1 − η2

)
p(p+ 1)φpq. (3.14)

We now note that the last term in equation (3.13) exactly cancels (3.14).
Finally we apply equation (A.1) in terms of Jacobi polynomial P 2p+1,0

q (η2), to
re-express the two differential terms in equation (3.13) as

(1− η2
2)
∂2P 2p+1,0

q

∂η2
2

+ (−(2p+ 1)− (2p+ 3)η2)
∂P 2p+1,0

q

∂η2
= −p(p+ 2p+ 2)P 2p+1,0

q .

This term combined with p(p + 2)P 2p+1,0
q exactly balances the non-differential

term in equation (3.12) thereby demonstrating that the basis (3.11) is a solution
to the Sturm-Liouville equation (3.12).

The eigenvalues of both the quadrilateral and triangular singular Sturm-
Liouville equation do not uniquely correspond to a single eigenfunction as was
the case for the one-dimensional equation. In the multi-dimensional problem a
single eigenvalue λ = C corresponds to a family of eigenfunctions. As noted by
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Figure 3.13 Polynomial space in terms of a Pascal’s triangle for the triangular ex-
pansion (shaded region) and quadrilateral expansion (shaded region plus values within
dotted line) when P1 = P2 = 3.

Wingate & Taylor [493] the commonly used triangular polynomial space (see
section 3.2.2.4) corresponds to a union of these eigenspaces for all eigenvalues
less than a constant. This can be appreciated from the eigenvalue definition since
for λpq = (p + q)(p + q + 2) to be a constant requires (p + q) to be constant.
A fixed value of (p + q) = P corresponds to all eigenfunctions of polynomial
order P . Finally we note that the singular Sturm Liouville equation (3.12) can
be written in terms of Cartesian coordinates as

∂

∂ξ1

(
(1 + ξ1)

[
(1 − ξ1)

∂φ

∂ξ1
− (1 + ξ2)

∂φ

∂ξ2

])

+
∂

∂ξ2

(
(1 + ξ2)

[
(1 − ξ2)

∂φ

∂ξ2
− (1 + ξ1)

∂φ

∂ξ1

])
+ λφ = 0.

Similar singular Sturm-Liouville equations can also be derived for the hexa-
hedral, prismatic and tetrahedral expansion as discussed in [480, 493]. However,
the pyramidic expansion is not encompassed in the same analysis.

3.2.2.4 Polynomial Space of Bases and Assembly of Expansions

The polynomial spaces, in Cartesian coordinates, for the two-dimensional expan-
sions are:

P = Span{ξp
1 ξ

q
2 }(pq)∈Υ (3.15)

where Υ for each domain is

• Quadrilateral Υ = {(pq)|0 ≤ p, q; q ≤ P1; q ≤ P2}
• Triangular Υ = {(pq)|0 ≤ p, q; q ≤ P1; p+ q ≤ P2; P1 ≤ P2}.

The polynomial spaces for the case when P1 = P2 = 3 for both the quadrilateral
and triangular expansions are shown in figure 3.13.

The polynomial spaces, in Cartesian coordinates, for the three-dimensional
expansions are:
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Figure 3.14 Pascal’s diagram demonstrating the polynomial space of the orthogonal
expansion when P1 = P2 = P3 = 1. (a) Hexahedral expansion, (b) Prismatic expansion,
(c) Pyramidic and Tetrahedral expansion.

P = Span{ξp
1 ξ

q
2 ξ

r
3}(pqr)∈Υ (3.16)

where Υ for each domain is

• Hexahedron:
Υ = {(pqr)| 0 ≤ p, q, r; p ≤ P1; q ≤ P2; r ≤ P3}

• Prism:
Υ = {(pqr)| 0 ≤ p, q, r; p ≤ P1; q ≤ P2; p+ r ≤ P3; P1 ≤ P3}

• Pyramid:
Υ = {(pqr)| 0 ≤ p, q, r; p ≤ P1; q ≤ P2; p+ q + r ≤ P3; P1, P2 ≤ P3}

• Tetrahedron:
Υ = {(pqr)| 0 ≤ p, q, r; p ≤ P1; p+ q ≤ P2;

p+ q + r ≤ P3; P1 ≤ P2 ≤ P3}.

(3.17)

The range of p, q, and r indicate how the expansions should be assembled to
generate an expansion with a complete polynomial space. As illustrated in figure
3.14, when P1 = P2 = P3 the tetrahedral and pyramidic expansions span the
same space and are in a subspace of the prismatic expansion, which is in turn a
subspace of the hexahedral expansion.

3.2.3 Modified C0 Expansions

Although the orthogonality of the expansions in section 3.2.2 is attractive these
expansions are not normally the most suitable expansions for a general spectral/hp
element discretisation. For example, if we are using a standard Galerkin formula-
tion then the global expansion is normally required to haveC0 continuity between
elemental domains. The work by Dubiner [142] first discussed the modification
of the triangular orthogonal expansions of section 3.2.2 into a semi-orthogonal
expansion suitable to generate C0 continuous global expansions. The modified
semi-orthogonal expansion was subsequently extended to three-dimensions by
Sherwin & Karniadakis [428] and Sherwin [421]. We note, however, that the
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orthogonal bases can still be useful when considering discontinuous Galerkin for-
mulation. Although it is theoretically possible to assemble the orthogonal expan-
sion into multiple regions and enforce a degree of continuity between elemental
regions, such an assembly will in practice destroy the orthogonality of the global
expansion.

Similar to the discussion in section 2.3.2.1, we can develop an expansion
amenable to enforcing C0 continuity globally by decomposing the orthogonal
expansions into an interior and boundary contribution. We will require that
the interior modes (or bubble functions) are zero on the boundary of the local
elemental domain. The completeness of the expansion is then ensured by adding
boundary modes which consist of vertex, edge, and face contributions. The vertex
modes have unit value at one vertex and decay to zero at all other vertices; edge
modes have local support along one edge and are zero on all other edges and
vertices; face modes have local support on one face and are zero on all other faces,
edges, and vertices. Using this decomposition, C0 continuity between elements
can be enforced by matching similar shaped boundary modes, see [430].

3.2.3.1 Modified Principal Functions

Analogous to orthogonal expansion we define three principal functions denoted
by ψa

i (z), ψb
ij(z) and ψc

ijk(z) (0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K):

ψa
i (z) =





(
1−z
2

)
i = 0

(
1−z
2

) (
1+z
2

)
P

1,1

i−1
(z) 1 ≤ i < I

(
1+z
2

)
i = I

, (3.18)

ψb
ij(z) =





ψa
j (z) i = 0, 0 ≤ j ≤ J

(
1−z
2

)i+1
1 ≤ i < I, j = 0

(
1−z
2

)i+1 (
1+z
2

)
P

2i+1,1

j−1
(z) 1 ≤ i < I, 1 ≤ j < J

ψa
j
(z) i = I, 0 ≤ j ≤ J

, (3.19)

ψc
ijk(z) =






ψb
jk

(z) i = 0, 0 ≤ j ≤ J, 0 ≤ k ≤ K

ψb
ik

(z) 0 ≤ i ≤ I, j = 0, 0 ≤ k ≤ K

(
1−z
2

)i+j+1
1 ≤ i < I, 1 ≤ j < J, k = 0

(
1−z
2

)i+j+1 (
1+z
2

)
P

2i+2j+1,1

k−1
(z) 1 ≤ i < I, 1 ≤ j < J 1 ≤ k < K

ψb
ik

(z) 0 ≤ i ≤ I, j = J, 0 ≤ k ≤ K

ψb
jk

(z) i = I, 0 ≤ j ≤ J, 0 ≤ k ≤ K

. (3.20)
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Figure 3.15 diagrammatically indicates the structure of the principle func-
tions ψa

i (z), ψb
ij(z), and ψc

ijk(z) as well as how the function ψa
i (z) is incorpo-

rated into ψb
ij(z), and similarly how ψb

ij(z) is incorporated into ψc
ijk(z). The

function ψa
i (z) has been decomposed into two linearly varying components and

a function which is zero at the end points. This function is identical to the
one-dimensional modal expansion which was used in the tensorial construction
of the structured modal expansions. The linearly varying components also gen-
erate the vertex modes which are identical to the standard linear finite ele-
ment expansion. The interior contributions of all the base functions (that is,
1 ≤ i < I, 1 ≤ j < J. 1 ≤ k < K) are similar to the orthogonal basis func-
tions defined in section 3.2.2. However, they are now pre-multiplied by a factor
of the form

(
1−z
2

) (
1+z
2

)
which ensures that these modes are zero on the bound-

aries of the domain. The value of α, β in the Jacobi polynomial Pα,β
p (z) has also

been modified to maintain as much orthogonality as possible in the mass and
Laplacian systems. As can be seen in figure 3.15 we have ordered the definition
of ψa

i (z), ψb
ij(z), and ψc

ijk(z) in equations (3.18-3.19) so that the modes can be
interpreted according to the physical location of the modes. For example, the
vertex modes correspond to the corner location of the arrays. We note, however,
that an alternative technique would have been to order the arrays according to
increasing polynomial order. Finally we observe that there is a great deal of sim-
ilarity between ψb

ij(z) and ψc
ijk(z). Not only does ψc

ijk(z) contain ψb
ij(z) along

its boundary but the interior contribution of ψc
ijk(z) is related to the interior

contribution of ψb
ij(z) since

ψc
ijk(z) = ψb

i+j,k(z) 1 ≤ i, j, k; i < I, i+ j < J ; k < K.

3.2.3.2 Definition of Expansion Bases

In the same way as the orthogonal expansions, the two-dimensional expansions
are defined in terms of the modified principal functions as:Formulation

note: Definition of hi-

erarchical modified C0

expansions in 2D stan-

dard regions.

• Quadrilateral expansion: φpq(ξ1, ξ2) = ψa
p(ξ1)ψa

q (ξ2)

• Triangular expansion: φpq(ξ1, ξ2) = ψa
p(η1)ψb

pq(η2)

where

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

are the two-dimensional collapsed coordinates. In figure 3.16 we see all of the
modified expansion modes for a fourth-order (P = 4) modified triangular ex-
pansion. From this figure it is immediately evident that the interior modes have
zero support on the boundary of the element. This figure also illustrates that the
shape of every boundary mode along a single edge is identical to one of the modes
along the other two edges. This was not the case for the orthogonal expansion
in section 3.2.2 but is ensured in the modified expansion by the introduction of
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Figure 3.15 Illustration of the structure of the arrays of modified principal functions
ψa

i (z), ψb
ij(z), and ψc

ijk(z). These arrays are not globally close packed although any
edge, face, or interior region of the array may be treated as such. The interior of the
arrays ψb

ij(z) and ψc
ijk(z) have been shaded to indicate the minimum functions required

for a complete triangular and tetrahedral expansion.

p
q

 φpq(ξ1,ξ2) = ψp(η1) ψpq(η2)
a b

ξ1

ξ2

q

p

ψpq(η2)b
p

aψp(η1)

Figure 3.16 Construction of a fourth-order (P = 4) triangular expansion using the
product of two modified principal functions ψa

p (η1) and ψb
pq(η2). As compared with the

orthogonal expansion shown in figure 3.11, the modes are now decomposed into interior
and boundary contributions where the boundary modes have similar forms along each
edge.

ψa
i (z) into ψb

ij(z). In the three-dimensional expansion an equivalent condition is

ensured by the introduction of ψb
ij(z) into ψc

ijk(z).
The three-dimensional expansions are defined in terms of the principal func-

tions as: Formulation

note: Definition of hi-

erarchical modified C0

expansions in 3D stan-

dard hybrid regions.
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Figure 3.17 The construction of the collapsed Cartesian coordinates system maps
vertex D onto vertex C in plot (a). If we consider the quadrilateral region in plot (a) as
describing a two-dimensional array in p and q then we can imagine an equivalent array
within the triangular region as shown in plot (b).

• Hexahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(ξ1) ψa

q (ξ2) ψa
r (ξ3)

• Prismatic expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p (η1) ψa

q (ξ2) ψb
pr(ξ3)

• Pyramidic expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(η1) ψa

q (η2) ψc
pqr(η3)

• Tetrahedral expansion: φpqr(ξ1, ξ2, ξ3) = ψa
p(η1) ψb

pq(η2) ψc
pqr(η3)

where

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η1 =

2(1 + ξ1)

(1 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3,

are the three-dimensional collapsed coordinates.

3.2.3.3 Construction of Modified Basis from Principal Functions

Unlike the structured expansion in the quadrilateral and hexahedral domains, or
even the orthogonal expansions introduced in section 3.2.2, the modified principal
functions for the unstructured regions are no longer in a close packed form.
That is to say, we cannot consecutively loop over the indices p, q, and r. The
reason for this is that the introduction of the boundary/interior decomposition
destroys the dense packing of the principal functions ψb

pq and ψc
pqr, although

the indices corresponding to a specific edge, face, or interior modes remain close
packed. Even though these arrays are not close packed their definition permits
an intuitive construction of the expansion basis by considering each function to
be part of an array within the local region.

Two-Dimensional Expansions
Implementation

note: Details of how

to construct a complete

2D modified basis from

principal functions.

In section 3.1, we demonstrated how the quadrilateral expansion may be con-
structed by considering the definition of the basis φpq(ξ1, ξ2) as a two-dimensional
array within the standard quadrilateral region with the indices p = 0, q = 0 cor-
responding to the lower left-hand corner as indicated in figure 3.17(a). Using this
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diagrammatic form of the array we can construct the vertex and edge modes by
determining the indices corresponding to the vertex or edge of interest. A similar
approach is possible with the modified triangular expansion.

We recall that to construct the local coordinate system we used a collapsed
Cartesian system where vertex D in figure 3.17(a) was collapsed onto vertex C
as shown in figure 3.17(b). Therefore, if we use the equivalent array system in
the triangular region we can construct our triangular expansions. For example,
the vertices marked A and B in figure 3.17(b) are defined as

Vertex A = φ00(η1, η2) = ψa
0 (η1)ψb

00(η2)

Vertex B = φP10(η1, η2) = ψa
P1

(η1)ψb
P10(η2).

The vertex at the position marked CD in figure 3.17(b) was formed by collapsing
the vertex D onto vertex C in figure 3.17(a). Therefore, this mode is generated
by adding the contribution from the indices corresponding to the vertices C and
D, that is,

• Vertex CD = φ0P2
(η1, η2)+φP1P2

(η1, η2) = ψa
0 (η1)ψb

0P2
(η2)+ψa

P1
(η1)ψb

P1P2
(η2).

From the definition of ψb
pq(η2) for the modified basis we see that ψb

0P2
(η2) =

ψb
P1P2

(η2). This condition was necessary to ensure that all the boundary modes
have a similar shape, however, we see that the definition of vertex CD can be
simplified to

• Vertex CD = (ψa
0 (η1) + ψa

P1
(η1))ψb

0P2
(η2).

Finally, recalling the definition of ψa
p (η1) we find that

ψa
0 (η1) + ψa

P1
(η1) = (1−η1

2 ) + (1+η1

2 ) = 1

and therefore vertex CD is defined as

• Vertex CD = ψb
0P2

(η2) = (1+η2

2 ),
[
= (1+ξ2

2 )
]
.

Although we could have gone straight to this answer, the construction using the
analogy of the collapsed coordinate system to the rectangular system is helpful
in assembling the three-dimensional basis.

For the triangular expansion the edge modes are defined as:

• Edge AB : φp0(η1, η2) = ψa
p(η1)ψb

p0(η2) (0 < p < P1)

• Edge AC : φ0q(η1, η2) = ψa
0 (η1)ψb

0q(η2) (0 < q < P2)

• Edge BD : φP1q(η1, η2) = ψa
P1

(η1)ψb
P1q(η2) (0 < q < P2).

In constructing the triangular region from the quadrilateral region as shown in
figure 3.17, edge CD was eliminated. It does not, therefore, contribute to the
triangular expansion.
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Matrix
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(Symmetric)(P-2)(P-1)/2

3P

Figure 3.18 The structure of the mass matrix for a triangular expansion φpq = ψa
pψ

b
pq

of order P1 = P2 = 14 within the standard region T 2. The boundary modes have been
ordered first followed by the interior modes. If the q index is allowed to run faster, the
interior matrix has a bandwidth of (P − 2) + (P − 3) + 1.

Finally the interior modes of the modified triangular expansion (which be-
come the triangular face modes in the three-dimensional expansions) are defined
as

• Interior : φpq(η1, η2) = ψa
p(η1)ψb

pq(η2) (0 < p, q; p < P1; p+q < P2; P1 ≤ P2).

A full listing of the triangular basis in terms of the Jacobi polynomials can
be found in Appendix D. There is a dependence of the interior modes in the
p direction on the modes in the q direction which ensures that each mode is
a polynomial in terms of the Cartesian coordinates (ξ1, ξ2). This dependence
requires that there should be as many modes in the q direction as there are
in the p direction, hence the restriction that P1 ≤ P2. A complete polynomial
expansion typically involves all the modes defined above and this expansion is
optimal in the sense that it spans the widest possible polynomial space in (ξ1, ξ2)
with the minimum number of modes. More interior or edge modes could be
used but if they are not increased in a consistent manner the polynomial space
will not be increased. In figure 3.18 we see the structure of the mass matrix
for a P1 = P2 = 14 polynomial order triangular expansion within the standard
triangular region. The matrix is ordered so the boundary modes are first followed
by the interior system. It can be shown (see [429]) that if we order the interior
system so the q index runs fastest then the bandwidth of the interior system is
(P − 2) + (P − 3) + 1.
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Figure 3.19 The structure of the mass matrix for a triangular expansion of order
P1 = P2 = 14 where the principal function ψa

i (z) is defined using P 2,2

i (z) and the
principle function ψb

ij(z) is defined using P 2i+3,2

j (z). In this case the interior expansion
is orthogonal; however, the boundary system has become more dense.

As mentioned previously, the value of α and β in the Jacobi polynomials
used in the principal functions ψi

p(z) and ψb
ij(z) were chosen to minimise the

bandwidth in both the mass and Laplacian systems. However, as noted by [142,
492] the bandwidth of the interior system of the mass matrix can be made
orthogonal by using P 2,2

i (z) in the principal function ψa
i (z) and P 2i+3,2

j (z) in

the principal function P 2i+3,2
j (z). Nevertheless, as illustrated in figure 3.19 the

coupling between the interior and boundary system is stronger.

Three-Dimensional Expansions
Implementation

note: Details of how

to construct a complete

3D modified basis from

principal functions.

As illustrated in figure 3.20, for the hexahedral domain the indices p, q, r cor-
respond directly to a three-dimensional array where all indices start from zero
at the bottom left-hand corner. Therefore, the vertex mode labelled A is de-
scribed by φ(000) = ψa

0 (ξ1)ψa
0 (ξ2)ψa

0 (ξ3), similarly the vertex mode labelled H is
described by φ(P1,P2,P3), and the edge modes between C and G correspond to
φ0,P2,r (1 < r < P3).

A

B
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D

E

F

G

H

A

B
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D A

B

D A

B
0

p
P1

0

P2

0

P3

qr

E

F

G

H

EF
GH EF

GH

C CD

Figure 3.20 Generation of the standard tetrahedral domains from repeated collapsing
of a hexahedral region.
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When considering the prismatic domain we use the equivalent hexahedral
indices. Accordingly, vertex A is now described by φ(000) = ψa

0 (ξ1)ψa
0 (η2)ψb

00(ξ3).
In generating the new coordinate system, vertex G was mapped to vertex E and
therefore the vertex mode, labelled EG in the prismatic domain, and is described
by φ(0,0,P3) + φ(0,P2,P3) (that is, adding the two vertices from the hexahedral
domain which form the new vertex in the prismatic domain). A similar addition
process is necessary for the prismatic edge EG − FH which is constructed by
adding the edge modes EF (that is, φ(p,0,P3)) to the edge modes GH (that is,
φ(p,P2,P3)). In degenerating from the hexahedral domain to the prismatic region,
the edges EG and FH are removed and therefore do not contribute to the
prismatic expansion.

This process can also be extended to construct the expansion for the pyra-
midic and tetrahedral domains. For both these cases the top vertex is constructed
by summing the contribution of E,F,G, and H . In the tetrahedral domain edges
CG and DH are also added. Although the modified functions ψb

ij and ψc
ijk are

not close packed, every individual edge, face, and the interior modes may be
summed consecutively. A full listing of all the modes for the hexahedral, pris-
matic, pyramidic, and tetrahredal expansions is given in Appendix D.

The present construction has assumed that P1, P2, and P3 have been fixed
within the local expansion. In practice, every edge may have a different bound,
every face can be described by two bounds, and the interior can be described
by three bounds. However, to generate an expansion which spans as complete a
polynomial space as possible, all edges which vary with the p index should be
assembled from 0 < p < P1. Similarly, all edges which vary with q or r should
be assembled from 0 < q < P2, 0 < r < P3, respectively.

The face modes in all four regions are dependent on the index pairs (p, q),
(p, r), and (q, r), where the third index is fixed for a given face. If we let (a, b)
represent any one of these three index pairs and Pa, Pb represent the bounds
upon which a face is dependent, then the quadrilateral face modes should be
assembled over all the indices similar to the edge modes, that is, 0 < a < Pa, 0 <
b < Pb. The triangular faces are dependent upon the function ψb

ij(z) either
directly or indirectly through ψc

ijk(z). Therefore, the indices for a triangular
face are similar to the two-dimensional expansion and should be assembled as
(0 < a, b; a < Pa; a+ b < Pb; Pa ≤ Pb).

Finally, the interior assembly depends upon which principal functions are
used. In the hexahedral domain, the interior assembly is the same as that used
for the edge and quadrilateral faces (0 < p < P1; 0 < q < P2; 0 < r < P3).
The prismatic domain contains the principal function ψb

qr(ξ3) and so the interior
assembly is similar to the (q, r) face assembly and has the form (0 < p < P1; 0 <
q, r; q < P2; q + r < P3; P2 ≤ P3). The interior modes for the pyramidic and
tetrahedral expansions use the ψc

pqr(η3) principal function and should therefore
be assembled up to the limits (0 < p, q, r; p < P1; p + q < P2; p + q + r <
P3; P1 ≤ P2 ≤ P3).

Providing all the modes used in the each edge, face, and interior assembly are
consecutive, then the expansions are complete even though the polynomial space
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Figure 3.21 Mass matrices for the prismatic (left) and pyramidic (right) domains at
a fixed polynomial order of P = 10. Both expansions have been plotted so that the
vertex modes are first followed by the edge, face, and finally the interior modes.

of the expansion may not contain as many monomials as the number of modes.
With the exception of the pyramidic expansion the above assembly procedure
will give polynomial expansions which contain the same number of modes as
the monomials in the polynomial space. The pyramidic function does not have
this property since boundary/interior decomposition requires that there be a
greater number of modes. The pyramidic expansion also differs in the fact that
the individual modes are not polynomials in terms of the Cartesian coordinates
(ξ1, ξ2, ξ3). However, the linear combination of the modes does produce an ex-
pansion which is complete in terms of polynomials of the Cartesian coordinates.

Although the use of the modified expansion allows the hybrid domains to
be tessellated into a global C0 expansion, this process has reduced the orthog-
onality of the modes as compared with the orthogonal versions given in section
3.2.2. Nevertheless, the Jacobi polynomials used in the interior of the principal
functions ψa

i (z), ψb
ij(z), and ψc

ijk(z) have been chosen to maintain as much or-
thogonality in the expansions as possible. To realise this orthogonality the k index
must run faster than the j index which must run faster than the i index. Figure
3.21 shows all the non-zero entries of the mass matrix for the prismatic and pyra-
midic expansion within a single domain using an expansion of polynomial order
P = 10. A high degree of sparsity is evident particularly in the prismatic region
although it should be noted that for a fixed order of P1 = P2 = P3 = P = 10 the
prismatic expansion has 726 modes whereas the pyramidic expansion has only
386 modes. The structure of the mass matrix for the tetrahedral expansion is
also shown in figure 3.22 for polynomial orders of P = 4, 9 and P = 19.

As a final point we note that the use of the collapsed Cartesian coordinate
system means that the coordinate system in the triangular faces, unlike the
quadrilateral faces, are not rotationally symmetric. This means that there is a
restriction on how two triangular faces, in a multi-domain expansion, must be
aligned. In section 4.1.6 we show that this condition can easily be satisfied for
all tetrahedral meshes although some care must be taken when using a mixture
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Figure 3.22 The structure of the mass matrix of a tetrahedral expansion in App T 3

for P = 4 (top left), P = 9 (top right) and P = 19 (bottom).

of different elemental domains.

3.2.3.4 Polynomial Space of Modified Unstructured Expansions

The polynomial space of these expansions is the same as the orthogonal expan-
sions [see equation (3.16)], and with the exception of the pyramidic expansion
the number of modes is equal to the size of the polynomial space. The pyramidic
expansion requires extra modes to perform the interior/boundary decomposi-
tion as compared to the orthogonal expansion. Unfortunately, the introduction
of these extra modes does not increase the polynomial space of the expansion.

A notable advantage of the boundary/interior decomposition in the modified
expansions is the ability to use a different number of modes along every edge,
within all faces as well as the interior. Similar to the structured expansions this
permits a high level of flexibility in the multi-domain extension where a different
polynomial order can be used within every elemental region.

3.3 Non-Tensorial Nodal Expansions in a Simplex

The use of nodal spectral element methods in simplex regions such as triangles
and tetrahedrons has also been very limited by comparison to nodal quadrilateral
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and hexahedral expansions. A nodal type basis was proposed by Mavripilis and
Rosendale [323] in 1993 although this has been observed to lead to unstable
schemes for P > 3 in C0 continuous spectral elements. A variation of this was
discussed in [484] but has not been used widely in any applications. A desirable
feature of a nodal triangular basis is that it can be used in conjunction with the
standard nodal spectral element. As discussed in sections 2.3.4.2 and 3.1, the
nodal spectral element basis commonly uses the tensor product of polynomials
through the Gauss-Lobatto-Legendre quadrature points. In this section we shall
review two non-tensorial bases within a triangular region, which have edges that
match these Gauss-Lobatto-Legendre quadrature points.

Minimisation of Electrostatic Potential

Hesthaven[231] proposed an extension to the concept of using the minimisa-
tion of an electrostatic potential (see section 2.3.3.2) to determine a nodal set
of points in a triangle. Using the one-dimensional distribution of points to con-
strain the nodal distribution along the edges, the interior nodal points were then
also determined as the minimum of an electrostatic potential. By constraining
the edge points in this manner the nodes along all edges can be constrained to
the Gauss-Lobatto-Legendre quadrature points. The nodal distribution, there-
fore, offers a compatible extension to the quadrilateral expansion where both
quadrilateral and triangular regions can be assembled into a global C0 expan-
sion. This expansion has been used in the solution of conservation laws [234],
incompressible Navier-Stokes equations [483] and computational electromagnet-
ics [236]. The technique was extended to the tetrahedral region in Hesthaven &
Teng [235].

Minimisation of Lebesgue Constant and the Fekete Points

A reasonably good choice for the nodal points within the triangular or tetra-
hedral region are the points which minimise the Lebesgue constant. The Lebesgue
constant is a measure of how close the polynomial approximation to a function
is to the best polynomial approximation in the maximum norm. Based on this
idea, an alternative to electrostatic minimisation is to search for a nodal set with
a small Lebesgue constant by maximising the determinant of the Vandemonde
matrix. These points are known as the Fekete points and this basis has been
investigated by Bos [69], Chen & Babus̆ka [93] and Taylor, Wingate & Vincent
[448]. The last authors applied this nodal basis to computational acoustics in
[269]. In one-dimension the Fekete points are also the Gauss-Lobatto-Legendre
quadrature points which, as noted previously, are used in the standard quadrilat-
eral spectral element basis. The Fekete distribution is, therefore, a good extension
to the nodal quadrilateral expansion. We also note that a nodal distribution of
points in a triangle and tetrahedron with an L2-norm optimal Lebesgue constant
were determined by Chen & Babus̆ka [93, 94] although these points do not have
an edge distribution which can be identified with Gauss-Lobatto-Jacobi points.
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The nodal basis for a triangular region cannot be defined in terms of a closed
form expression, as was the case for the tensorial expansions of sections 3.1
and 3.2. Instead, we define the nodal basis as Lagrange polynomials, denoted
as LNm

i (ξ), through a set of ΠNm
nodal points in the triangular region where

ξi = (ξi
1, ξ

i
2) and

Π =
{
ξ0, ξ1, . . . , ξNm

}
.

For the nodal bases to be complete in a linear space of order P , i.e.

LNm

i (ξ) ⊆ PP = spanPP (T 2) = span{ξp
1 ξ

q
2}(p,q)∈Υ

Υ = {(p, q)|0 ≤ p, q; p+ q ≤ P}
then it is necessary that ΠNm

must contain (P+1)(P+2)/2 distinct nodal points
ξi.

Since there is not a closed form expression for Lagrange polynomials it is
necessary to express the Lagrange basis in terms of another more easily defined
polynomial, for example the orthogonal expansion discussed in section 3.2.2.
Determining the Lagrange polynomial in terms of another polynomial expansion
naturally leads us to the generalised Vandemonde matrix which will be discussed
in section 3.3.2. However, before proceeding we recall that a measure of the
Lagrange basis through either the electrostatic or Fekete points is through the
magnitude of the the Lebesgue constant. Therefore, before introducing the nodal
bases we will first discuss the Lebesgue constant in the next section.

3.3.1 The Lagrange Polynomial and Lebesgue Constant

Consider the problem of interpolating a function f(ξi) ≡ f(ξi
1, ξ

i
2) in the standard

triangular region Ωst = T 2 = {−1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0}. Given a distinct set of
points Π = {ξ0, · · · , ξNm

}, we assume a unique polynomial function g(ξ) exists
which satisfies

g(ξi) = f(ξi) ∀ i, 0 ≤ i < Nm.

This polynomial can be considered the interpolating polynomial such that

g(ξ) = INm
f(ξ),

where INm
is the interpolation operator. Following [231, 448] the Lebesgue con-

stant shows how well INm
approximates f(ξ). We denote by p⋆(ξ) the best

approximating polynomial in the max norm, defined as

||f ||∞ = max
ξ∈Ωst

|f(ξ)|.

Since p⋆(ξ) is in the same polynomial space as INm
f(ξ) we note that p⋆ = INm

p⋆.
Therefore, we observe that

||f − INm
f ||∞ = ||f − p⋆ + INm

p⋆ − INm
f ||∞

≤ ||f − p⋆||∞ + ||INm
||∞||p⋆ − f ||∞
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Figure 3.23 Spatial distribution of the Lebesgue function,
∑

0≤i<Nm
|LNm

i (ξ)|, for

(a) equispaced points Nm = 15, (b) Fekete points Nm = 15. The maximum of the
Lebesgue function gives the Lebesgue constant ΛNm . (Courtesy of T.C. Warburton)

≤ (1 + ||INm
||∞)||p⋆ − f ||∞

where we understand that

||INm
||∞ = max

||f ||∞=1
||INm

f ||∞.

The constant ΛNm
= ||INm

||∞ is known as the Lebesgue constant. We observe
that the Lebesgue constant is a measure of how close the approximation, INm

f , is
to the best polynomial approximating polynomial p⋆ in the max norm. Choices
such as equally spaced points (in the square or triangle) are known to have
Lebesgue constants that grow exponentially [448].

If we now represent our polynomial approximation in terms of the Lagrange
interpolation or cardinal function at the nodal points, i.e.

INm
f(ξ) =

Nm∑

i=0

f(ξi)L
Nm

i (ξ)

where
LNm

i (ξj) = δij

and δij is the Kronecker Delta, we observe that

ΛNm
= ||INm

||∞ = max
||f ||∞=1

||INm
f ||∞ = max

ξ∈Ωst

∑

0≤i<Nm

|LNm

i (ξ)|. (3.21)

Therefore, evaluating the Lagrange polynomials throughout the triangular re-
gion, ξ ∈ Ωst allows us to get a graphical interpretation of the Lebesgue function,∑

0≤i<Nm
|LNm

i (ξ)|. The maximum bound of this function over the region leads
to the Lebesgue constant ΛNm

. The Lebesgue function is illustrated in figure
3.23 where we show plots of

∑
0≤i<Nm

|LNm

i (ξ)| for equispaced and Fekete (see
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section 3.3.4) distribution of nodal points when Nm = 15 (or P = 4). In this
case the equispaced and Fekete points have Lebesgue constants of ΛNm

= 3.47
and ΛNm

= 2.72, respectively.

3.3.2 Generalised Vandemonde Matrix

Since there is not a closed form expression for the Lagrange polynomial through
an arbitrary set of points in the triangular region it is necessary to express the
Lagrange polynomial in terms of another polynomial which has a closed form
definition, for example the orthogonal polynomial discussed in section 3.2.2. The
choice of the closed form basis is important since ultimately a matrix inversion
is involved and therefore the basis dictates the conditioning of the matrix and
ultimately the computational stability. Following [483] we consider the interpo-
lation of a polynomial function p(ξ) through a set ΠNm

= {ξ0, · · · ξNm−1} of
Nm = (P + 1)(P + 2)/2 distinct points, where P is the polynomial order. The
polynomial p(ξ) can be exactly represented by any polynomial expansion, φi(ξ),
which spans the same space, i.e.

p(ξ) =
∑

0≤i<Nm

φi(ξ)f̂i,

where f̂i represents the expansion coefficients associated with φi(ξ). We note
that the use of the index i in the above expression denotes a summation over
all modes in the expansion. In sections 3.1 and 3.2 we adopted double indices
(p, q) to represent a two-dimensional basis constructed from a tensor product of
two one-dimensional expansions. We, therefore, understand that a summation
over i represents a complete summation over the pair (p, q). Since p(ξ) and φi(ξ)
span the same polynomial space, any form of projection will recover the exact
expansion coefficients, f̂i. We can, therefore, obtain the expansion coefficients by
performing a collocation projection at the points ξi such that

∑

0≤j<Nm

φj(ξi)f̂j = p(ξi) ∀ i, 0 ≤ i < Nm

which can be written in matrix notation as

V f̂ = f ,

where f [i] = f(ξi),V [i][j] = φj(ξi) and f̂ [i] = f̂i. If φi(ξ) denotes a monomial
basis φi(ξ) = φi[p,q](ξ1, ξ2) = ξp

1ξ
q
2 the matrix V is the Vandemonde matrix.

For a general basis φi(ξ) the matrix V is known as the generalised Vande-
monde matrix. As recognised in [448, 483] the choice of the orthogonal expansion
(φi[p,q](ξ1, ξ2) = ψa

p (ξ1)ψb
pq(ξ2)) discussed in section 3.2.2 is particularly conve-

nient due to the strong linear independence of the expansion. This property leads
to a well conditioned system which is then amenable to numerical inversion.



Ch. 3 Multi-dimensional Expansion Bases 119

A further observation that is worthwhile noting for our subsequent discussion
of nodal bases is that when φp(ξ) is a known function, such as the orthogonal
basis of section 3.2.2, then if V [i][j] = φj(ξi) we find that

V




L0(ξ)
...

LNm−1(ξ)


 =




φ0(ξ)
...

φNm−1(ξ)


 or




L0(ξ)
...

LNm−1(ξ)


 = V −1




φ0(ξ)
...

φNm−1(ξ)


 . (3.22)

Therefore, given a set of points ξj (0 ≤ j < Nm) and polynomial functions

φ0(ξ), . . . , φNm−1(ξ) we can evaluate LNm

0 (ξ), . . . , LNm

Nm−1(ξ) using equation (3.22).
Further details on constructing the generalised Vandemonde matrix can also be
found in section 4.1.5.3.

3.3.3 Electrostatic Points

As previously discussed in section 2.3.3.2, Stieltjes [439] and Szego [444] showed

the connection between the polynomial (1−ξ)α(1+ξ)βPα,β
P−1 and the minimisation

of the following problem: Assume that (P − 1) unit mass charges with unit
charge, are allowed to move freely inside the interval [−1, 1] between two fixed

unit charges α ∼ (α+1)
2 and β ∼ (β+1)

2 held fixed at ξ1 = ±1. The steady state
position of the charges that minimises the electrostatic energy:

W = −
P−1∑

i=1





(α+ 1)

2
log |ξi + 1| +

(β + 1)

2
log |ξi − 1| +

1

2

P−1∑

j = 1

j 6= i

log |ξi − ξj |




.

is the distribution of the Gauss-Lobatto points. An analogous minimisation per-
formed without the two fixed end-charges also leads to the zeros of the Ja-
cobi polynomial Pα,β

P−1 or equivalently the Gauss rather then the Gauss-Lobatto

quadrature points. Since the Legendre polynomials LP (ξ) = P 0,0
P (ξ) and their

derivatives L′
P (ξ) = 1

2 (P − 1)P 1,1
P−1(ξ) are widely used in both the modal and

nodal expansion for quadrilateral and hexahedral domains, Hesthaven [231] adopted
a similar approach to that in Stieltjes problem to determine a set of nodal points
in the simplex.

As the electrostatic points in one-dimension can be constructed to comply
with the Gauss-Lobatto-Jacobi quadrature points, a natural requirement for the
distribution of nodes in the triangular region is that the boundary charges are
located at these Gauss-Lobatto-Jacobi quadrature points along each edge. In this
way it is possible to enforce that the nodal basis is aligned with the quadrilateral
nodal basis. Hesthaven [231] assumed the potential from each edge ‘e’ contributed
a potential at a point, ξ, in the triangular region of the form
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Ψe(ξ) = ρe

∫ 1

0

1

|ξ − ξe|
dt,

where ξe = va + t(vb − va), t ∈ [0, 1] represents the coordinates along an edge
between the vertices va and vb. He then assumed that the Np unit mass charges
were allowed to move mutually interacting according to the potential

Ψ(ξi, ξj) =
ρ2

p

|ξi − ξj |
,

and posed the following minimisation problem, analogous to that of Stieltjes:

Problem: Let the line charge density be given as ρe > 0. Assume that Np

unit mass charges with unit charge, ρp = 1, are allowed to move freely inside
the simplex. What is the steady state position of the charges that minimises the
electrostatic energy

W (ξ1, . . . , ξNp
) =

Np∑

i=1




3∑

i=1

Ψe(ξi) +
1

2

Np∑

j = 1

j 6= i

Ψ(ξi, ξj)


?

In the minimisation the particles were constrained to have certain symmetries
motivated by the symmetry of the domain and the likelihood that the optimal
points will have strong symmetry. Therefore, the line charge ρe was to set the
values equal on all edges such that ρ1 = ρ2 = ρ3. The value of ρe also de-
pended on the choice of Gauss-Lobatto-Jacobi quadrature nodes prescribed on
the edges. Therefore, for a symmetrical distribution of edge nodes (i.e., α = β)
there was an additional parameter, α. If α = −1/2 the edge points correspond
to a Gauss-Lobatto-Chebychev distribution whereas α = 1 corresponds to the
Gauss-Lobatto-Legendre points commonly used in nodal spectral elements. Fi-
nally for a P -order expansion there are Np = (

∏
)(P + 2)/2 − 3P points to be

determined by the minimisation.
To solve the Np-body minimisation problem, Hesthaven considered the steady

state solution of time-integrating Newton’s second law stated as

ξ′′
i = −




3∑

i=1

∇ξe(ξi) +
1

2

Np∑

j = 1

j 6= i

∇ξ(ξi, ξj)


 − ǫξ′

i.

The term ξ′
i corresponds to a friction term in order to make the problem slightly

dissipative. In solving the problem, highly accurate time integration is required to
reduce numerical dissipation, however the value of ǫ does not alter the solution
since we are only interested in the steady state solution. The choice of initial
conditions is important since finding the global minimum of the energy functionFormulation note:

Simplex nodal points

that match the spec-

tral element quadrilat-

eral edge nodes. A full

listing of the points is

given in appendix D.
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Figure 3.24 Nodal points from electrostatic potential minimisation with the boundary
nodes constrained to be the Gauss-Lobatto-Legendre quadrature points at a polynomial
order of (a) P = 4, (b) P = 7 and (c) P = 10. (Courtesy of J. Hesthaven)

is particularly complicated, especially for larger Np. This was partly simplified
by imposing a high degree of symmetry onto the nodal location, we refer the
reader to [231] for more details.

The distribution of points corresponding to a choice of Gauss-Lobatto-Legendre
quadrature distribution on the edges at polynomial orders of P = 4, 7, 10 is shown
in figure 3.24, and the values of the Lebesgue constants for these bases are shown
in table 3.3. The concept of electrostatic distribution of points has been extended
to a tetrahedral domain in the work of Hesthaven & Teng [235], and both the
triangular and tetrahedral distribution of points are given in appendix D.

3.3.4 Fekete Points

Following the discussion in section 3.3.1 the optimal distribution of nodal points
in a simplex, from the point of view of interpolation, is one which minimises the
Lebesgue constant. However, there does not appear to be a feasible method to
compute these points. A tractable alternative is to use the Fekete points. Fol-
lowing Taylor et al. [448], Fekete points are a set of points ΠNm

= {ξ0, . . . , ξNm
}

which maximise (for a fixed basis) the determinant of the Vandemonde matrix,
i.e.

max
ξ

i

|V (ξ0, . . . , ξNm
)|. (3.23)

These points are independent of the choice of basis, since a change of basis only
multiplies the determinant by a constant independent of the points.

In the interval [−1, 1], Fejér [156] showed that the Fekete points are the Gauss-
Lobatto-Legendre quadrature points. This result was extended to the square and
cube by Bos et al.[70] who showed that the Fekete points were the tensor product
of Gauss-Lobatto-Legendre quadrature points. As discussed in section 3.3.3 the
one-dimensional Fekete points are also the minimum energy configuration of the
point charges in the interval [439] when the choice of the electrostatic energy
contains fixed charges at the end-points. However, in higher dimensions, Fekete
points are not Gaussian-like quadrature points or the minimum energy elec-
trostatic points. In the triangular region Bos [69] conjectured that Fekete points
contain the one-dimensional Gauss-Lobatto-Legendre point on the boundary and
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this was numerically verified in [448]. This is significant since it means that the
Fekete points will conform with the quadrilateral spectral elements.

Finally, to understand the connection between the Fekete points and the
Lebesgue constant we recall the results of equation (3.22) where the Lagrange
polynomial through a set of points ΠNm

= {ξ0, . . . , ξNm
} in a triangle can be

evaluated as

LNm

i (ξ) =
|V (ξ0, . . . , ξi−1, ξ, ξi+1, . . . , ξNm−1)|

|V | (3.24)

where V is the generalised Vandemonde matrix. By definition of the Fekete
points (equation (3.23)) the determinant in the denominator of equation (3.24)
is at its maximum value. Therefore, there is no value of ξ in the triangular region
that can make the determinant in the numerator larger than the denominator.
Only when ξ = ξi will the numerator of equation (3.24) equal the denominator,
making the Lagrange polynomial equal to one. Therefore, Fekete points generate
Lagrange polynomials which achieve their maximum in the triangular region at
the associated Fekete point. This property also provides a bound on the Lebesgue
constant since from equation (3.21) we observe that when LNm

i (ξ) is evaluated
at the Fekete points then

ΛNm
= max

ξ∈Ωst

∑

0≤i<Nm

|LNm

i (ξ)| ≤ Nm.

In [448] it was numerically observed that the Lebesgue constant using the Fekete
points behaved as C

√
Nm. In the one-dimensional case it is also known that the

Lebesgue constant behaves as the logarithm of Nm.

3.3.4.1 Evaluation of the Fekete Points

The earliest work on evaluating the Fekete points in a triangle was done by Bos
[69] who derived the points up to polynomial order or P = 3 and an approximate
solution up to P = 7. Chen & Babus̆ka [93] improved and extended Bos’ results
up to P = 13. Subsequently, Taylor et al. [448] determined the points up to a
polynomial order of P = 19 with improvement on the numerical points of Chen
& Babus̆ka [93] for P > 10.

To evaluate the Fekete points, Taylor et al. [448] used a steepest ascent al-
gorithm to determine the maximum determinant. This approach solved the or-
dinary differential system

∂ξi

∂t
=
∂|V |
∂ξi

∀ i, 0 ≤ i < Nm (3.25)

where the points were evaluated by moving their location in the direction of the
steepest ascent until an equilibrium was reached, subject to the constraint that
the points could not leave the triangular region.

The Fekete point solution presented by Taylor et al. [448] has a very elegant
construction and interpretation and we therefore shall revisit it here. Recalling
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Polynomial Electrostatic Fekete Equispaced
Order, P points points points

6 4.08 4.17 8.45
7 4.77 4.91 14.35
8 5.85 5.90 24.01
9 6.87 6.80 40.92
10 8.44 7.75 70.89
11 10.08 7.89 124.53
12 12.63 8.03 221.41
13 15.34 9.21 397.7
14 22.18 9.72 720.7
15 29.69 9.97 1315.9
16 41.73 12.10 2418.5

Table 3.3 Lebesgue constant ΛNm (where Nm = (P + 1)(P + 2)/2) for a set of
points in the triangular region as a function of polynomial order P for the electro-
static points of Hesthaven [231], the Fekete points of Taylor, Wingate & Vincent [448]
and an equispaced distribution in the triangular region. Data was taken from [231,
448] with the permission of the authors.

that we can use any definition of the Vandemonde matrix, V , in equation (3.25),
we start by rewriting equation (3.25) as

∂ξi

∂t
=
∂|V |
∂ξi

=
∑

i,j

∂|V |
∂V ij

∂V ij

∂ξi
(3.26)

where V ij represents the (i, j) entry of V . We then note that the partial deriva-
tive of the determinant of a matrix with respect to an entry V ij is given by

∂|V |
∂V ij

= −1i+j |Aij |,

where Aij is the ij minor of V . Now if we choose to define the Vandemonde
matrix V with respect to a Lagrange basis the matrix V is the identity matrix.
Therefore, the derivative of |V | with respect to any matrix element is only non-
zero for diagonal elements. In this case the ith diagonal element is also the ith

Lagrange function, LNm

i (ξ), evaluated at the points ξi and the determinant of
the minor |Aii| = 1. Therefore, equation (3.26) becomes

∂ξi

∂t
=
∂LNm

i

∂ξi

.

The above algorithm has a very simple geometric interpretation which is illus-
trative of what the Fekete points are trying to achieve in the triangular space.
Since we would like the Lagrange functions to approximate a delta function at
ξi the maximum of the function should be achieved at the nodal point ξi. The
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Figure 3.25 Nodal Fekete points at a polynomial order of (a) P = 4, (b) P = 7 and
(c) P = 10. (Courtesy of T.C. Warburton)

steepest ascent algorithm simply moves each point towards the maximum of its
associated Lagrange function. The iterative nature of the algorithm comes into Formulation note:

Simplex nodal points

that match the spec-

tral element quadrilat-

eral edge nodes. A full

listing of the points is

given in appendix D.

play because the cardinal functions change with every change in the nodal points
and therefore we have to recompute the basis function at every iteration.

To complete the algorithm we also require a technique to evaluate
∂L

Nm
i

∂ξ
i

. If we

denote by V φ the Vandemonde matrix between a basis φi(ξ) and the Lagrange
basis Li(ξ) then differentiating equation (3.22) and evaluating the ith entry we
obtain

∂LNm

i

∂ξi

(ξi) =

Nm−1∑

j=0

V φ
−1[i][j] φi(ξi).

Although any basis with a closed form definition is mathematically suitable,
numerically it is advantageous to use a basis which is well-conditioned. The
orthogonal basis discussed in section 3.2.2 is therefore a good choice and was
adopted in [448, 483].

In a similar manner to the electrostatic problem of section 3.3.3 the choice
of initial conditions is important. In [448] it was found that the best initial
distribution was one which generated a density of points which approximates
the extremal measure for a triangle. We refer the reader to [448] for more detail.

In figure 3.25 we show the distribution of Fekete points in a right-handed
triangle, the nodal value of which is provided in appendix D. Currently, no points
are available for the tetrahedral region. Also shown in table 3.3 are the associated
Lebesgue constants of the Lagrange polynomial through the Fekete points. We
note that for P ≤ 9 the electrostatic points have a lower Lebesgue constant
but for P > 10 the Fekete points are better with a significant improvement for
P > 13 [448].

3.4 Other Useful Tensor Product Extensions

In sections 3.1 and 3.2 we focused on tensor product expansions within standard
hybrid regions using either modal or nodal expansion. However, the great power
of using a tensor product extension is that we can mix different expansion types
according to the problems we are interested in discretising.
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3.4.1 Nodal Elements in a Prismatic Region

In section 2.3.4 we discussed a triangular nodal expansion which is compati-
ble with the standard quadrilateral nodal spectral element discretisation dis-
cussed in section 3.1. As we have discussed previously, the quadrilateral expan-
sion φ2D

pq (ξ1, ξ2) = hp(ξ1)hq(ξ2) can be extended to the hexahedral domain by

making a tensor product of φ2D
pq with the Lagrange polynomial in the ξ3 direction,

i.e., φpqr = φ2D
pq (ξ1, ξ2)hr(ξ3). We can perform an analogous extension to the tri-

angular nodal expansions similar to the modal prismatic expansions discussed
in 3.2.3. If we denote the triangular nodal expansion as LNm

i (ξ) = LNm

i (ξ1, ξ2),
then a prismatic nodal basis which is compatible in terms of nodal location with
the hexahedral nodal expansions is φpqr(ξ1, ξ2, ξ3) = LNm

i (ξ1, ξ2)hr(ξ3).

3.4.2 Expansions in Homogeneous Domains

For a wide range of applications such as flow between parallel plates or past
a circular cylinder, the problem of interest contains at least one homogeneous
direction. If the homogeneous direction is in the ξ3 coordinate we can construct
a three-dimensional basis φpqr(ξ1, ξ2, ξ3) in terms of any two-dimensional ex-
pansions discussed previously, denoted by φ2D

pq (ξ1, ξ2), multiplied by a complete
expansion in ξ3, which we shall denote as ϕr(ξ3), that is,

φpqr(ξ1, ξ2, ξ3) = φ2D
pq (ξ1, ξ2)ϕr(ξ3).

The above expansion is clearly a tensor product of the two-dimensional basis
with the expansion ϕr(ξ3). The absence of any range of scales in the ξ3 direction
encourages us to use a purely spectral, or p-type, expansion which spans the
complete homogeneous direction rather than a multi-domain, or h-type, exten-
sion.

However, the most convenient choice of ϕr(ξ3) is dependent upon the bound-
ary conditions at the ends of the homogeneous direction. If Dirichlet or Neumann
boundary conditions are required at the ends of homogeneous direction then a
variety of polynomial expansions might be used including the Legendre polyno-

mial ψ̃a
r (ξ3) = Lr(ξ3) or the Chebychev polynomials Tr(ξ3) = P

− 1

2
,− 1

2

r (ξ3). Each
of these expansions have their own desirable properties which are appropriate
for a given application (see [197]).

If the domain is periodic in the homogeneous direction then by far the most
widely used expansion for ϕr(ξ3) is the Fourier expansion, that is,

ϕr(ξ3) = eirβξ3

where

β = 2π/Lξ3
,

and Lξ3
is the periodic length. A great attraction of this expansion is the use of

Fast Fourier Transform to go between Fourier and physical space. Furthermore,
when considering linear differential operators we note that
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∇φpqr(ξ1, ξ2, ξ3) =
[
∇̃r

]
φpqr(ξ1, ξ2, ξ3) =




∂
∂ξ1

∂
∂ξ2

irβ


φpqr(ξ1, ξ2, ξ3),

∇2φpqr(ξ1, ξ2, ξ3) =
[
∇̃2

r

]
φpqr(ξ1, ξ2, ξ3) =

(
∂2

∂ξ21
+

∂2

∂ξ22
− r2β2

)
φpqr(ξ1, ξ2, ξ3).

The introduction of the operators ∇̃ and ∇̃2 means that we can reduce a three-
dimensional linear differential problem to a series of r two-dimensional problems
over the Fourier planes. See chapter 9 for details of the application of this ex-
pansion to the incompressible Navier-Stokes equations.

3.4.3 Cylindrical Domains

Similar to the Cartesian homogeneous domains, any problem with a rotational
symmetry can often be conveniently expressed in cylindrical coordinates. Using
cylindrical coordinates allows a Fourier expansion to be imposed in the azimuthal
direction which has the favourable properties mentioned in section 3.4.2. How-
ever cylindrical coordinates also introduce a radial geometric singularity at the
cylinder axis. In solution of the Navier-Stokes system this geometric singular-
ity can be conveniently manipulated by multiplying the equations through by
a factor of the radius [348]. Introducing an extra factor of r into the Galerkin
framework can lead to a reduction in the convergence rate of the spectral ele-
ment expansion. For example, Tomboulides et al. [464] and Gerritsma & Phillips
[179], have developed a nodal spectral element expansion based on the zeros of
the P 0,1

p Jacobi polynomials in the radial direction. The two-dimensional expan-
sion is then constructed by a tensor product of the standard Lagrange polynomial
through the zeros of the P 1,1

p Jacobi polynomial in the axial direction, see [179]
for further details. It is, however, also possile to use a standard one-dimensional
modal or nodal expansion in the radial direction provided the expansion has
a boundary-interior decomposition. As discussed in Blackburn & Sherwin [59]
this construction still maintains the exponential convergence of the spectral/hp
element method.

3.5 Exercises: Construction of Multi-Dimensional

Elemental Mass Matrices

Building upon the implementation of an one-dimensional spectral/hp element
solver presented in chapter 2.6 we begin an analogous multi-dimensional formu-
lation as part of the exercises given in this section. Although there are more
formulation and implementation concepts we need to appreciate for a full multi-
dimensional, as a starting point we can consider how to numerically construct
the multi-dimensional modal and nodal bases. To provide an application for us-
ing the multi-dimensional bases we we consider the construction of an elemental
mass matrices Me (see sections 2.3.2.1 and 4.1.5.3) for the different expansion
bases. The mass matrix requires the evaluation of the inner product of the modes
in an expansion bases with itself, i.e.
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(φpq , φrs)Ωe =

∫

Ωe

φpq(ξ1, ξ2)φrs(ξ1, ξ2) dξ1 dξ2.

In evaluating the integrals we require some basic integration and numbering
concepts which will be introduced in more detail in chapter 4. In section 4.4 we
will later provide exercises to extend the elemental matrices into a global matrix
and also discuss how to impose boundary conditions. As will also be discussed in
last part of section 4.1.5.1, the computation of a mass matrix for a non-tensorial
nodal basis can be implemented by considering the Lagrange basis in terms of
an orthogonal tensorial expansion. Therefore in the final exercise in this section
we will discuss the construction of the generalised Vandemonde matrix which
expresses a Lagrange polynomial in terms of another polynomial basis.

Some useful codes are also available on the web page

http://www.ae.ic.ac.uk/staff/sherwin/HpSpectralBook/
Implementation

note: Implementation

of 2D quadrilateral ele-

mental mass matrices.

1. We start by constructing the elemental mass matrix M e for a modal
quadrilateral expansion φpq(ξ1, ξ2) = ψa

p(ξ1)ψa
q (ξ2) of order P1 = P2 = P

as defined in section 3.1.1. The first part of the implementation is to gen-
erate an array containing each component of the tensorial basis, ψa

p(ξ1)
and ψa

q (ξ2) at a set of discrete points ξ1i, ξ2j . Typically we only require the
basis at the discrete quadrature points. Since we have fixed the polyno-
mial order in both expansion directions to P we can also choose to fix the
quadrature order in both directions to Q1 = Q2 = Q. Depending on the
type of Gaussian quadrature adopted we can set Q such that the integra-
tion is exact. For example when using Gauss-Lobatto-Legendre integration
the choice Q = P + 2 will mean each component of the elemental mass
matrix is exactly integrated (see section 2.4.1). We now define two arrays
base1[p][i], base2[q][j] for 0 ≤ p, q ≤ P, 0 ≤ i, j < Q such that

base1[p][i] = ψa
p(ξ1i)

base2[q][j] = ψa
q (ξ2j)

where we recall ψa
p(ξ) is dependent upon the Jacobi polynomials defined

in appendix A. Code is C and C + + to evaluate the quadrature points
and the Jacobi polynomials can also be found on the web page above in
the Polylib library. If we are using the same quadrature type, for example
Gauss-Lobatto-Legendre (see section 2.4.1.1), in both the ξ1, ξ2 directions
the arrays base1[p][i] and base2[q][j] will be identical and one array need
be defined. Although multi-dimensional integration is discussed in section
4.1.1 we have already seen how it can be applied in one-dimension in section
2.4.1. For the tensor based expansion in a quadrilateral region the product
of two one-dimensional integrals, i.e.

Me[n(p, q)][m(r, s)] =

∫ 1

−1

∫ 1

−1

φpq(ξ1, ξ2)φrs(ξ1, ξ2)dξ1 dξ2
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=

∫ 1

−1

ψp(ξ1)ψr(ξ2)dξ1 ×
∫ 1

−1

ψq(ξ2)ψs(ξ2)dξ2

=

[
i=Q∑

i=0

w[i] base1[p][i]base1[r][i]

]
×




j=Q∑

j=0

w[j] base2[q][j] base2[s][j]




where w[i] = w0,0
i , w[j] = w0,0

j are the quadrature weights. In the above
operation n(p, q) and m(r, s) denote a mapping from the pair of one-
dimensional indices (p, q) and (r, s) in a single unique numbering which
represents the location of each two-dimensional mode in the array Me.
There are clearly many different choices of numbering arrays and one of
the most straight forward numbering can be constructed as

n(p, q) = p× (P + 1) + q, m(r, s) = r × (P + 1) + s.

An alternative numbering scheme would be to place the boundary modes
before the interior modes.

(a) To validate your implementation of the two-dimensional Gaussian in-
tegration rule, integrate the function f(x, y) = ξ41ξ

5
2 in the standard

quadrilateral domain using Q = 7 points. The function can be numer-
ically evaluated as

∫ 1

−1

∫ 1

−1

ξ41ξ
5
2dξ1 dξ2 =

[
i=Q∑

i=1

(ξ1i)
4
w[i]

]
×




j=Q∑

j=1

(ξ2j)
5
w[j]



 .

(b) Construct the two-dimensional mass matrix Me or rank Nm = (P +
1)2 for P = 7, Q = 9 and plot the structure of the matrix to obtain a
similar plot to figure 3.18. Note that in this figure the matrix number-
ing n(p, q) and m(r, s) has been ordered so that the boundary modes
appear first followed by the interior modes.

(c) Generate the mass matrix Me for the orthogonal basis φpq(ξ1, ξ2) =

ψ̃a
p(ξ1)ψ̃a

q (ξ2) defined in section 3.2.2.1 for P = 7, Q = 9. Note this is
a good debugging exercise since we know it should lead to a diagonal
matrix.

(d) Finally construct the mass matrix for the nodal basis φpq(ξ1, ξ2) =
hp(ξ1)hq(ξ2) defined in section 3.1.1. In this case the matrix is only
“discretely” orthogonal when Q = P + 1. To observe this feature
assemble the matrix for P = 7, Q = 9 and P = 7, Q = 8.

2. We now consider the construction of the elemental mass matrix for the
tensorial based triangular expansion φpq(ξ1, ξ2) = ψa

p(η1)ψb
pq(η2) defined inImplementation

note: Implementation

of 2D triangular ele-

mental mass matrices.

3.2.3.1. In general, this follows a very similar construction to the quadrilat-
eral case but we now need to use the collapsed coordinate system defined
in section 3.2.1.1. As will be discussed in more detail in section 4.1.1.2,
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the integration of the basis φpq over the triangular region Ωst = T 2 =
{(ξ1, ξ2)| − 1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0} can be expressed as

M e[n(p, q)][m(r, s)] =

∫ 1

−1

∫ −ξ1

−1

φpq(ξ1, ξ2)φrs(ξ1, ξ2)dξ1 dξ2

=

∫ 1

−1

∫ 1

−1

ψa
p(η1)ψb

pq(η2)ψa
r (η1)ψb

rs(η2)
(

1−ξ2

2

)
dη1 dη2

=

∫ 1

−1

ψa
p(η1)ψa

r (η1) dη1

∫ 1

−1

ψb
pq(η2)ψb

rs(η2)
(

1−ξ2

2

)
dη2

where

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2.

Once again we observe that a generalised tensor product basis can be
evaluated as two one-dimensional type integrals. We can also use differ-
ent types of Gauss-Jacobi quadrature which automatically absorb the fac-

tor of
(

1−ξ2

2

)
into the quadrature weights (see section 4.1.1.2). The ze-

ros and weight which contain this factor are denoted as ξ1,0
i and w1,0

i

and can also be generate using the Polylib library available on the web
page. To continue the construction of the mass matrix we define two ar-
rays base1[p][i], base2[p][q][j] for 0 ≤ p, q ≤ P, 0 ≤ i, j < Q such that

base1]p][i] = ψa
p (ξ0,0

1i )

base2[p]]q][j] = ψb
pq(ξ1,0

2j )

where ψa
p(ξ) and ψb

pq(ξ) depend upon Jacobi polynomials defined in ap-
pendix A and can be numerically determined using the Polylib library. As
discussed in section 3.2.3.1 the array base2[p][q][i] does not have to con-
tain all entries since only some components are required to evaluate the
full bases φpq(ξ1, ξ2) = ψa

p(η1)ψb
pq(η2). Having constructed base1[p][i] and

base2[p][q][j] we can discretely construct the mass matrix as

M e[n(p, q)][m(r, s)] =

∫ 1

−1

ψa
p(η1)ψa

r (η1) dη1

∫ 1

−1

ψb
pq(η2)ψb

rs(η2)
(

1−ξ2

2

)
dη2

=

i=Q∑

i=0

w1[i] base1[p][i]base1[r][i]

×
j=Q∑

j=0

w2[j] base2[p][q][i] base2[r][s][i],

where w1[i] = w0,0
i , w2[j] = w1,0

j /2. Unlike the quadrilateral expansion, for
this case the index array n(p, q),m(r, s) cannot be defined in close packed
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form. This point is discussed in section 4.1.5.1 and highlighted in figure 4.6.
As also discussed in section 3.2.3.3 special attention must be taken when
constructing the top vertex which is decomposed into two contributions
from the base[p][q][j].

(a) Construct the two-dimensional mass matrix Me or rank Nm = (P +
1)(P + 2)/2 for P = 14, Q = 16 and plot the structure of the matrix
to recover figure 3.18. Recall that in this figure the matrix numbering
n(p, q) and m(r, s) has been ordered so that the boundary modes
appear first followed by the interior modes. The indices q and s must
run faster than the indices p and r to observe the semi-orthogonal
structure of the matrix.

(b) Construct the two-dimensional mass matrix Me for the orthogonal

triangular expansion φpq(ξ1, ξ2) = ψ̃a
p(η1)ψ̃b

pq(η2) and verify that your
matrix is diagonal.

3. In this final exercise we will consider how to construct the Lagrange poly-
nomial LNm

i (ξ) through a set of nodal points ξi = [ξ1i, ξ2i]
T using the

orthogonal triangular tensorial basis φpq(ξ) = ψ̃a
p(ξ1)ψ̃b

pq(ξ2). From section
3.3.2 we recall that the Lagrange polynomial can be evaluated using the
generalised Vandemonde matrix V as




L0(ξ)
...

LNm−1(ξ)


 = V −1




φ0(ξ)
...

φNm−1(ξ)


 . (3.27)

Whilst we can use any polynomial expansion which spans the same poly-
nomial space as LNm

i , the choice of the orthogonal expansion leads to a
well conditioned generalised Vandemonde matrix which is important for
numerical inversion. For a discrete set of nodal points ξi, 0 ≤ i ≤ Nm

through which we define the Lagrange polynomial we can construct the
generalised Vandemonde matrix

V [m(p, q)][i] = ψ̃a
p(η1i)ψ̃

b
pq(η2i)

where

η1i =
2(1 + ξi1)

1 − ξ2i

, η2i = ξ2i

and m(p, q) denotes a mapping between the index pair (p, q) and the unique
index m, for example

m(pq) = q +
p(2P + 1 − p)

2
.

Inverting V , for example using a LAPACK [13], we can then evaluate the
Lagrange polynomials  LNm

i (ξ) at any desired location, ξ, using equation
(3.27).
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(a) Determine the P = 4 order Lagrange polynomial expansion using
Nm = (P + 1)(P + 2)/2 = 15 modes through a set of equispaced
points

ξ1i =
2i

P + 1
− 1, ξ2j =

2j

P + 1
− 1, 0 ≤ i, j; i+ j ≤ (P + 1)

To plot the function evaluate the Lagrange polynomials, LNm

i , using
equation (3.27) and evaluate the Lagrange functions at P = 8 (Nm =
45) equispaced points.

(b) Determine the P = 4 order Lagrange polynomial expansion using
Nm = 15 modes through the electrostatic points defined in appendix
D and evaluate the Lagrange functions at P = 8 (Nm = 45) equis-
paced points.

(c) Evaluate the Lebesgue function
∑

0≤i<Nm
|LNm

i (ξ)| for the Lagrange
polynomial defined at equispaced and electrostatic nodal points for
P = 4 and compare your function to figure 3.23.


