Dear All,I am trying to using the periodic condition within the CompressibleFlowSolver. I have tested the IsentropicVortex case with periodic conditions imposed at all boundaries. The xml file(attached with this mail) was generated with MeshConvert from a Gmesh file. I found out that in the <COMPOSITE> part, the listing order of the faces on a pair of periodic boundaries must be one-to-one correspondance, otherwise the boundary condition will not be applied correctly. However, MeshConvert seems not to be able to ensure the correct orders. For example,
Wrong(generated directly by MeshConvert):<C ID="2"> F[14,4,31,23] </C><C ID="3"> F[8,17,26,33] </C><C ID="4"> F[1,7,20,25] </C><C ID="5"> F[18,13,34,30] </C><C ID="6"> F[0,6,11,16] </C><C ID="7"> F[24,28,32,35] </C>Correct(modified manually):<C ID="2"> F[14,4,31,23] </C><C ID="3"> F[17,8,33,26] </C><C ID="4"> F[1,7,20,25] </C><C ID="5"> F[13,18,30,34] </C><C ID="6"> F[0,6,11,16] </C><C ID="7"> F[24,28,32,35] </C>
I further checked the MeshConvert , and found out that at line 339 of the file 'OutputNekpp.cpp', there is a comment "Ensure that this composite is not used for periodic BCs!". Does this mean that MeshConvert can not be used when periodic BCs exist?Thank you in advance!Best wishes,Jian YU
<?xml version="1.0" encoding="utf-8" ?><NEKTAR><GEOMETRY DIM="3" SPACE="3"><VERTEX><V ID="0">0.00000000e+00 -5.00000000e+00 0.00000000e+00</V><V ID="1">5.00000000e+00 -5.00000000e+00 0.00000000e+00</V><V ID="2">5.00000000e+00 0.00000000e+00 0.00000000e+00</V><V ID="3">0.00000000e+00 0.00000000e+00 0.00000000e+00</V><V ID="4">0.00000000e+00 -5.00000000e+00 5.00000000e+00</V><V ID="5">5.00000000e+00 -5.00000000e+00 5.00000000e+00</V><V ID="6">5.00000000e+00 0.00000000e+00 5.00000000e+00</V><V ID="7">0.00000000e+00 0.00000000e+00 5.00000000e+00</V><V ID="8">1.00000000e+01 -5.00000000e+00 0.00000000e+00</V><V ID="9">1.00000000e+01 0.00000000e+00 0.00000000e+00</V><V ID="10">1.00000000e+01 -5.00000000e+00 5.00000000e+00</V><V ID="11">1.00000000e+01 0.00000000e+00 5.00000000e+00</V><V ID="12">5.00000000e+00 5.00000000e+00 0.00000000e+00</V><V ID="13">0.00000000e+00 5.00000000e+00 0.00000000e+00</V><V ID="14">5.00000000e+00 5.00000000e+00 5.00000000e+00</V><V ID="15">0.00000000e+00 5.00000000e+00 5.00000000e+00</V><V ID="16">1.00000000e+01 5.00000000e+00 0.00000000e+00</V><V ID="17">1.00000000e+01 5.00000000e+00 5.00000000e+00</V><V ID="18">0.00000000e+00 -5.00000000e+00 1.00000000e+01</V><V ID="19">5.00000000e+00 -5.00000000e+00 1.00000000e+01</V><V ID="20">5.00000000e+00 0.00000000e+00 1.00000000e+01</V><V ID="21">0.00000000e+00 0.00000000e+00 1.00000000e+01</V><V ID="22">1.00000000e+01 -5.00000000e+00 1.00000000e+01</V><V ID="23">1.00000000e+01 0.00000000e+00 1.00000000e+01</V><V ID="24">5.00000000e+00 5.00000000e+00 1.00000000e+01</V><V ID="25">0.00000000e+00 5.00000000e+00 1.00000000e+01</V><V ID="26">1.00000000e+01 5.00000000e+00 1.00000000e+01</V></VERTEX><EDGE><E ID="0"> 0 1 </E><E ID="1"> 1 2 </E><E ID="2"> 2 3 </E><E ID="3"> 3 0 </E><E ID="4"> 0 4 </E><E ID="5"> 1 5 </E><E ID="6"> 2 6 </E><E ID="7"> 3 7 </E><E ID="8"> 4 5 </E><E ID="9"> 5 6 </E><E ID="10"> 6 7 </E><E ID="11"> 7 4 </E><E ID="12"> 1 8 </E><E ID="13"> 8 9 </E><E ID="14"> 9 2 </E><E ID="15"> 8 10 </E><E ID="16"> 9 11 </E><E ID="17"> 5 10 </E><E ID="18"> 10 11 </E><E ID="19"> 11 6 </E><E ID="20"> 2 12 </E><E ID="21"> 12 13 </E><E ID="22"> 13 3 </E><E ID="23"> 12 14 </E><E ID="24"> 13 15 </E><E ID="25"> 6 14 </E><E ID="26"> 14 15 </E><E ID="27"> 15 7 </E><E ID="28"> 9 16 </E><E ID="29"> 16 12 </E><E ID="30"> 16 17 </E><E ID="31"> 11 17 </E><E ID="32"> 17 14 </E><E ID="33"> 4 18 </E><E ID="34"> 5 19 </E><E ID="35"> 6 20 </E><E ID="36"> 7 21 </E><E ID="37"> 18 19 </E><E ID="38"> 19 20 </E><E ID="39"> 20 21 </E><E ID="40"> 21 18 </E><E ID="41"> 10 22 </E><E ID="42"> 11 23 </E><E ID="43"> 19 22 </E><E ID="44"> 22 23 </E><E ID="45"> 23 20 </E><E ID="46"> 14 24 </E><E ID="47"> 15 25 </E><E ID="48"> 20 24 </E><E ID="49"> 24 25 </E><E ID="50"> 25 21 </E><E ID="51"> 17 26 </E><E ID="52"> 23 26 </E><E ID="53"> 26 24 </E></EDGE><FACE><Q ID="0"> 0 1 2 3</Q><Q ID="1"> 0 5 8 4</Q><Q ID="2"> 1 6 9 5</Q><Q ID="3"> 2 6 10 7</Q><Q ID="4"> 3 7 11 4</Q><Q ID="5"> 8 9 10 11</Q><Q ID="6"> 12 13 14 1</Q><Q ID="7"> 12 15 17 5</Q><Q ID="8"> 13 16 18 15</Q><Q ID="9"> 14 16 19 6</Q><Q ID="10"> 17 18 19 9</Q><Q ID="11"> 2 20 21 22</Q><Q ID="12"> 20 23 25 6</Q><Q ID="13"> 21 23 26 24</Q><Q ID="14"> 22 24 27 7</Q><Q ID="15"> 10 25 26 27</Q><Q ID="16"> 14 28 29 20</Q><Q ID="17"> 28 30 31 16</Q><Q ID="18"> 29 30 32 23</Q><Q ID="19"> 19 31 32 25</Q><Q ID="20"> 8 34 37 33</Q><Q ID="21"> 9 35 38 34</Q><Q ID="22"> 10 35 39 36</Q><Q ID="23"> 11 36 40 33</Q><Q ID="24"> 37 38 39 40</Q><Q ID="25"> 17 41 43 34</Q><Q ID="26"> 18 42 44 41</Q><Q ID="27"> 19 42 45 35</Q><Q ID="28"> 43 44 45 38</Q><Q ID="29"> 25 46 48 35</Q><Q ID="30"> 26 46 49 47</Q><Q ID="31"> 27 47 50 36</Q><Q ID="32"> 39 48 49 50</Q><Q ID="33"> 31 51 52 42</Q><Q ID="34"> 32 51 53 46</Q><Q ID="35"> 45 52 53 48</Q></FACE><ELEMENT><H ID="0"> 0 1 2 3 4 5 </H><H ID="1"> 6 7 8 9 2 10 </H><H ID="2"> 11 3 12 13 14 15 </H><H ID="3"> 16 9 17 18 12 19 </H><H ID="4"> 5 20 21 22 23 24 </H><H ID="5"> 10 25 26 27 21 28 </H><H ID="6"> 15 22 29 30 31 32 </H><H ID="7"> 19 27 33 34 29 35 </H></ELEMENT><COMPOSITE><C ID="1"> H[0-7] </C><C ID="2"> F[14,4,31,23] </C><C ID="3"> F[8,17,26,33] </C><C ID="4"> F[1,7,20,25] </C><C ID="5"> F[18,13,34,30] </C><C ID="6"> F[0,6,11,16] </C><C ID="7"> F[24,28,32,35] </C></COMPOSITE><DOMAIN> C[1] </DOMAIN></GEOMETRY><EXPANSIONS><E COMPOSITE="C[1]" NUMMODES="15" FIELDS="rho,rhou,rhov,rhow,E" TYPE="MODIFIED" /></EXPANSIONS><CONDITIONS>
<PARAMETERS><P> FinTime = 10. </P><P> TimeStep = 0.002 </P><P> NumSteps = 0 </P><P> IO_CheckSteps = 500 </P><P> IO_InfoSteps = 1 </P><P> Gamma = 1.4 </P><P> pInf = 101325 </P><P> rhoInf = 1.225 </P><P> uInf = 0.1 </P><P> vInf = 0.0 </P><P> wInf = 0.0 </P><P> CFL = 0 </P></PARAMETERS>
<SOLVERINFO><I PROPERTY="EQType" VALUE="EulerCFE" /><I PROPERTY="Projection" VALUE="DisContinuous" /><I PROPERTY="AdvectionType" VALUE="WeakDG" /><I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4"/><I PROPERTY="UpwindType" VALUE="ExactToro" /><I PROPERTY="ProblemType" VALUE="IsentropicVortex" /></SOLVERINFO>
<VARIABLES><V ID="0"> rho </V><V ID="1"> rhou </V><V ID="2"> rhov </V><V ID="3"> rhow </V><V ID="4"> E </V></VARIABLES>
<BOUNDARYREGIONS><B ID="1"> C[2] </B><B ID="2"> C[3] </B><B ID="3"> C[4] </B><B ID="4"> C[5] </B><B ID="5"> C[6] </B><B ID="6"> C[7] </B></BOUNDARYREGIONS>
<BOUNDARYCONDITIONS><REGION REF="1"><P VAR="rho" VALUE=[2]/><P VAR="rhou" VALUE=[2]/><P VAR="rhov" VALUE=[2]/><P VAR="rhow" VALUE=[2]/><P VAR="E" VALUE=[2]/></REGION><REGION REF="2"><P VAR="rho" VALUE=[1]/><P VAR="rhou" VALUE=[1]/><P VAR="rhov" VALUE=[1]/><P VAR="rhow" VALUE=[1]/><P VAR="E" VALUE=[1]/></REGION><REGION REF="3"><P VAR="rho" VALUE=[4]/><P VAR="rhou" VALUE=[4]/><P VAR="rhov" VALUE=[4]/><P VAR="rhow" VALUE=[4]/><P VAR="E" VALUE=[4]/></REGION><REGION REF="4"><P VAR="rho" VALUE=[3]/><P VAR="rhou" VALUE=[3]/><P VAR="rhov" VALUE=[3]/><P VAR="rhow" VALUE=[3]/><P VAR="E" VALUE=[3]/></REGION><REGION REF="5"><P VAR="rho" VALUE=[6]/><P VAR="rhou" VALUE=[6]/><P VAR="rhov" VALUE=[6]/><P VAR="rhow" VALUE=[6]/><P VAR="E" VALUE=[6]/></REGION><REGION REF="6"><P VAR="rho" VALUE=[5]/><P VAR="rhou" VALUE=[5]/><P VAR="rhov" VALUE=[5]/><P VAR="rhow" VALUE=[5]/><P VAR="E" VALUE=[5]/></REGION></BOUNDARYCONDITIONS>
<!-- Initial conditions not necessarysince they are imposed analitically --><!--FUNCTION NAME="InitialConditions"><E VAR="rho" VALUE="1"/><E VAR="rhou" VALUE="1"/><E VAR="rhov" VALUE="1"/><E VAR="E" VALUE="1"/></FUNCTION-->
</CONDITIONS></NEKTAR>
Nektar-users mailing list Nektar-users@imperial.ac.uk https://mailman.ic.ac.uk/mailman/listinfo/nektar-users