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Abstract 

The Spectral/HP element method has been applied to perform Direct Numerical Simulations 

(DNS) over a T106A turbine blade cascade at a Reynolds number of 60,000 using the open source 

software Nektar++. The main goal of the thesis is to investigate the potential of the Compressible 

Solver and to compare the performance with the Incompressible solver. First, compressibility 

effects were assessed under three different Mach numbers at a Reynolds number of 8,000. This 

was done by solving the compressible Navier-Stokes equations with the Compressible Flow 

Solver and the unsteady incompressible Navier-Stokes equations through the Velocity Correction 

Scheme with the Incompressible Solver and comparing the results.  The pressure and friction 

coefficients along the blade and the boundary layer parameters were analysed. The 

compressibility effects were found to be relevant even at low Mach numbers. Secondly, the 

Reynolds number was increased to 60,000, maintaining a low Mach number to mitigate 

compressibility effects and the results obtained through both solvers were compared. The 

Compressible solver was found to have three main downsides compared to the Incompressible 

solver. The main shortcoming of the Compressible solver is the numerical stability.  Global de-

aliasing technique addressing geometrical and PDE aliasing was applied to enhance stability of 

the simulations. Artificial viscosity turned out to be essential to deal with flow discontinuities 

when initializing the flow. The stability performance of both solvers was assessed by comparing 

the maximum time step allowing for a stable simulation under six different flow cases.  The 

second concern found was the discrepancy between the prescribed and actual inlet conditions for 

the Compressible solver.  The variances were investigated for different inlet conditions. The last 

inconvenience when using the Compressible solver was the lack of information in the user-guide. 

This lead to the development of a tutorial for the compressible flow solver and the update of the 

user-guide. Lastly, a study of the scalability of the problem when running multiple processes was 

performed.  
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                                                                            Chapter 1 

Introduction 

In this chapter the importance of the case study is presented with an overview of the software 

and method used for its resolution. Successively, the motivations and the objectives of the thesis 

are detailed. In the last section, the report structure is outlined.  

1.1 DNS of Low-Pressure Turbine Cascade 

Gas turbines plays a significant role in the global economy, being widely used in different 

industries. Convectional power plants, nuclear power stations, aero-engines and shipping are 

among the main applications of gas turbines. It is, hence, obvious that any increase in the 

efficiency of gas turbines would have a great impact, which explains the significant effort toward 

improving their design [1]. One major development is the increment of the reliability and 

accuracy of Computational Fluid Dynamics (CFD), that are recognized to be of extreme 

importance for the design.  

Turbomachinery flow involves both complex physics, such as waves impingement upon 

blades and aeroacoustics phenomena, and complex moving geometries to resolve the tight 

clearances between components, which ultimately makes it a challenge for CFD. In recent years, 

with the success of High Performance Computing, Direct Numerical Simulations (DNS) has 

become a powerful tool. This computational expensive numerical technique offers more accurate 

and better resolved simulations, giving solution to complicated flow phenomena and opening the 

door to a new way of advancement of turbomachinery design [2]. There are multiple studies 

recently reported applying DNS technique to turbomachinery applications [3] [4] [5] [6]. 

In the past few decades, spectral/hp element methods have gained significant attention in 

industry and academia. These numerical methods divide the domain in separate elements, 

applying a polynomial expansion of arbitrary order P to each element. The advantages being the 

arbitrary order of spatial accuracy while maintaining a relatively low computational cost and the 

geometric flexibility they present. The combination of these two assets makes the Spectral/hp 

element advantageous for Direct Numerical Simulations where high spatial resolution is 

required, and therefore a potential tool for turbomachinery design [7]. 

In this thesis, the Spectral/hp element method is employed to perform DNS of flow in a 

low-pressure T106A turbine airfoil cascade using Nektar++. This open-source software provides 

high-performance scalable solvers for partial differential equations using the Spectral/hp element 
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method. Among the several solver applications Nektar++ supports, this thesis focuses on the 

Compressible Flow and Incompressible Navier-Stokes solvers [8].   

1.2 Motivation and Objectives 

The main objective is to conduct numerical simulations on a T106A turbine blade cascade at a 

Reynolds number of 60,000 by using the Compressible and Incompressible Flow solvers and 

compare the results. In addition, the thesis gives a quantitative answer to how important 

compressible effects are for the T106A turbine blade cascade case. This was done by solving the 

unsteady compressible and incompressible Navier-Stokes equations under different Mach 

number cases and comparing the pressure and friction coefficient and analysing the boundary 

layer. Moreover, the performance of the Compressible and Incompressible solver is compared in 

terms of numerical stability. Also, a scalability analysis is performed. Lastly, this project aims to 

facilitate the user to run stable simulations with the Compressible Flow solver. This was achieved 

by creating a tutorial describing the main features in a simple manner and by updating the user-

guide to include de-aliasing techniques and artificial viscosity strategy.  

1.3 Report Structure 

This report is divided into five chapters. In the first chapter the subject matter was introduced 

and the main motivations and objectives of the thesis were set.  In chapter 2, the theoretical 

foundation of the numerical methods used in this thesis are presented. This includes, the 

description of the governing equations, the most common spatial discretisations for solving 

partial differential equations, the Spectral/hp element method, the two discontinuous spatial 

discretisations used, namely the DG method and the FR approach, the implementation of the 

boundary conditions, the De-Aliasing technique, the Riemann solvers and the non-smooth 

artificial viscosity. In chapter 3, the problem formulation is described. This section details the 

flow geometry and mesh used, the boundary and initial conditions and the solver configuration. 

Chapter 4 contains the results of the Direct Numerical Simulations. Within this chapter, the 

results and time step restrictions obtained with the Compressible and Incompressible solver under 

the same flow conditions are compared. Also, a study of the scalability is performed. Finally, 

chapter 5 includes the conclusions and recommendations for future work. This thesis involved 

the development of a tutorial and the update of the user-guide for the Compressible Flow Solver, 

presented in the appendices. 
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(2.1) 

(2.2)  

(2.3)  

(2.4)  

(2.5)  

(2.6)  

                                                                            Chapter 2 

Numerical Methods 

2.1 Governing Equations 

The governing equations considered in this work are the 2D compressible Navier-Stokes 

equations. The second-order partial differential equations in a two-dimensional physical domain 

Ω and in a Cartesian frame of reference are written as: 

𝜕𝒖

𝜕𝑡
+

𝜕𝒇1

𝜕𝑥
+

𝜕𝒇2

𝜕𝑦
= 0, 

where 𝒖 is the vector of the conserved variables and 𝒇1 = 𝒇1(𝒖, 𝛁𝒙𝒖), 𝒇2 = 𝒇2(𝒖, 𝛁𝒙𝒖)  are the 

vector of fluxes that can be expressed in terms of its inviscid and viscous fluxes:  

𝒖 = {

𝜌
𝜌𝑢
𝜌𝑣
𝐸

},              𝒇1 = 𝒇𝒊,1 − 𝒇𝒗,1 ,         𝒇2 = 𝒇𝑖,2 − 𝒇𝒗,2 . 

where 𝜌 is the density, u and v are the velocity components in x and y directions and E is the total 

energy. In this work, we considered a perfect gas law for which the pressure p is related to the 

total energy by the following expression:  

𝐸 =
𝑝

𝛾 − 1
+

1

2
𝜌 (𝑢2 + 𝑣2), 

where 𝛾  corresponds to the ratio of specific heats. 

The inviscid fluxes 𝒇𝑖,1 and 𝒇𝑖,2 from equation 2.2 are written as:  

𝒇𝒊,1 = {

𝜌𝑢

𝑝 + 𝜌𝑢2

𝜌𝑢𝑣
𝑢(𝐸 + 𝑝)

},      𝒇𝒊,2 = {

𝜌𝑣
𝜌𝑢𝑣

𝑝 + 𝜌𝑣2

𝑣(𝐸 + 𝑝)

}, 

while the viscous fluxes 𝒇𝑣,1 and 𝒇𝑣,2 assume the following form:  

𝒇𝑣,1 = {

0
𝜏𝑥𝑥
𝜏𝑦𝑥

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑦𝑥 + 𝑘𝑇𝑥

},    𝒇𝑣,2 = {

0
𝜏𝑥𝑦

𝜏𝑦𝑦

𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + 𝑘𝑇𝑦

},  

where 𝜏𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑦𝑥 and 𝜏𝑦𝑦 are the components of the stress tensor1 

𝜏𝑥𝑥 = 2𝜇 (𝑢𝑥 −
𝑢𝑥 + 𝑣𝑦

3
), 

𝜏𝑦𝑦 = 2𝜇 (𝑣𝑦 −
𝑢𝑥 + 𝑣𝑦

3
), 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇(𝑣𝑥 + 𝑢𝑦), 

being 𝜇 the dynamic viscosity according to the Sutherland’s law and k the thermal conductivity.  

                                                                 
1 Note that we use Stokes hypothesis λ = - 2/3 
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(2.7)  

(2.8)  

(2.9)  

(2.10)  

2.2 Numerical Approximations of PDEs 

The approximation of an exact solution of a partial differential equation involves the 

discretization of the equations to satisfy a finite number of prescribed conditions. The definition 

of the conditions determines the numerical method or projection operator employed. The method 

of weighted residuals shows how different weight functions can be used to give rise to the most 

popular numerical methods for solving PDEs.  

Suppose we have a linear partial differential equation defined over the domain Ω of the form: 

𝕃(𝑢) = 0, 

subject to appropriate initial and boundary conditions. It is assumed that the solution u(x,t), can 

be accurately approximated by a linear combination of basis functions:  

𝑢(𝒙, 𝑡) ≅ 𝑢𝛿(𝒙, 𝑡) = 𝑢0(𝒙, 𝑡)+∑  𝑢̂𝑖(𝑡)𝜙𝑖(𝒙),
𝑁𝑑𝑜𝑓
𝑖=1  

where 𝑢0(𝒙, 𝑡)  satisfies the initial and boundary conditions, 𝑢̂𝑖(𝑡)  are the Ndof unknown 

coefficients and 𝜙𝑖(𝒙)  are the trial (or expansion) functions satisfying the homogeneous 

boundary conditions. Substituting the approximation into the differential operator a non-zero 

residual, R, is generated:  

𝕃(𝑢𝛿) = 𝑅(𝑢𝛿). 
In order to solve equation 2.9 a restriction is placed on the residual. This condition is usually 

applied by forcing to zero the Legendre inner product of the residual with respect to a weight or 

test function 𝑣𝑗(𝒙):  

(𝑣𝑗(𝒙), 𝑅) = ∫ 𝑣𝑗(𝒙)𝑅(𝒙)𝑑𝒙 = 0
 

Ω

,         𝑗 = 1,2, … , 𝑁𝑑𝑜𝑓 

This reduces to a system of ordinary differential equations in 𝑢̂𝑖(𝑡), and for a time independent 

case, the result is a set of 𝑁𝑑𝑜𝑓 algebraic equations for the unknown constants 𝑢̂𝑖(𝑡). Table 2.1 

illustrates the different methods encompassed by the method of weighted residuals depending on 

the choices of the test functions 𝑣𝑗(𝒙) and the expansion functions 𝜙𝑖(𝒙).  

Type of method Test or Weight function 

Collocation Method 𝑣𝑗(𝒙) =  𝛿(𝒙 − 𝒙𝒋) 

Finite Volume/Subdomain Methods 
𝑣𝑗(𝒙) = {1 𝑖𝑛𝑠𝑖𝑑𝑒 Ω𝑗

0 𝑖𝑛𝑠𝑖𝑑𝑒 Ω𝑗
 

Least-Squares Method 
𝑣𝑗(𝒙) =

𝜕𝑅

𝜕𝑢̂𝑗
 

Galerkin Method 𝑣𝑗(𝒙) = 𝜙𝑖 

Petrov-Galerkin 𝑣𝑗(𝒙) = 𝜓𝑖(≠ 𝜙𝑖) 

Table 2.1 Different computational method defined by the test functions 𝑣𝑗(𝒙) used [7]. 
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However, the type of trial functions or approximation space are not defined. Spectral methods 

are characterised by using a set of global expansion functions, which are non-zero across the 

solution domain. On the other hand, the finite element methods use a set of expansion functions 

which are only defined in a local finite region. In Nektar++ we focus on spectral/hp element 

methods, combining the local nature of the expansion functions typical of finite element methods 

and the arbitrary expansion functions common in spectral methods [7]. 

2.3 Discontinuous Spectral/hp element methods 

The Spectral/hp element methods combines the partitioning of the computational domain into 

separate elements (h-type refinement) with spectral-like resolution properties (p-type refinement) 

in each element. Convergence is achieved both through mesh refinement or by increasing the 

polynomial order of the approximation. The spectral/hp can be described as a high-order finite 

element method, which integrates the high convergence and accuracy of the spectral methods 

and the geometric flexibility of the finite element method [7]. 

     The construction of the spectral/hp element method involves the domain decomposition into 

non-overlapping elements. In order to facilitate the implementation of the main operations, each 

local element is mapped to a reference (or standard) element. On each standard element, the 

solution is represented through an arbitrary-degree expansion basis, and the operations required 

are performed. After all the multiplications, differentiations and integrations are implemented, 

the global solution is constructed via connectivity rules at the interface between adjacent 

elements. The original PDE is reduced to an algebraic system of equations, in the case of a time 

independent problem, or to a system of ODEs which requires to be advanced in time. 

 

Figure 2.1: Discontinuous Spectral/hp element methods. 

This work is concerned with discontinuous spectral/hp methods, in which we require the 

flux to be continuous between two adjacent elements rather than the solution. The connectivity 
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(2.11)  

(2.12)  

rules based on the physics of the problem are achieved through a boundary term composed by a 

numerical flux. The numerical flux 𝒇𝛿𝐼(𝑢+
𝛿 , 𝑢−

𝛿) is obtained from the value of the solution on 

the left 𝑢+
𝛿 and right 𝑢−

𝛿 elements with respect to the interface. When discretizing a first order 

flux, namely the advective flux of the compressible Navier-Stokes equations, the compressible 

solver uses either approximated or exact Riemann solvers. In the case of second order flux, 

specifically, the viscous flux of the compressible Navier-Stokes, connectivity is also made 

through a numerical flux but of a slightly different form than the advection term [9]. 

In the compressible solver in Nektar++ two different discontinuous spatial discretisation 

approaches are used, the discontinuous Galerkin (DG) and the flux reconstruction (FR) for first 

and second order problems. 

2.4 Numerical Discretisation for first order problems 

The Euler equations are a subset of the compressible Navier-Stokes equations. They consist in a 

first-order hyperbolic system of equations describing inviscid flows without thermal 

conductivity. The discretization of a first order problem by means of the DG and FR approaches 

involves dividing the domain Ω into N non-overlapping subdomains Ω𝑛  and representing the 

solution by a polynomial of degree P within each element. The global solution is comprised by 

the summation of each elemental contribution [10].  

2.4.1 Discontinuous Galerkin approach 

The DG scheme takes into account the variational formulation of the equations, and when 

applied to the two-dimensional Euler equations the matrix form reads: 

𝑑𝐮̂𝑛
𝛿

𝑑𝑡
= 𝐌𝑛

−𝟏{𝐒𝜉 𝐟𝒊,1 𝑛
𝛿𝐷 + 𝐒𝜂 𝐟𝒊,2,𝑛

𝛿𝐷 − 𝐛̃ 
𝐷𝐺} ,      

where the superscript “D” indicates discontinuous quantities,  𝐌𝑛 is the mass matrix, 𝐒𝜉  

and 𝐒𝜂 are the advection matrices, 𝐟𝒊,1 𝑛
  and 𝐟𝒊,2,𝑛

  are the elemental nonlinear fluxes and 

𝐛̃ 
𝐷𝐺 is the surface integral:  

𝐛̃ 
𝐷𝐺 = ∫ ℓ𝑖𝑗(ℋ̃𝒊

𝛿𝐼 . 𝐧𝒆)
 

𝛿Ω𝑒

𝑑𝑠 ,      

“with ℓ𝑖𝑗  being a two-dimensional polynomial expansion basis, 𝐧𝒆  being the outward 

pointing normal of the face e of a given element, and ℋ̃𝒊
𝛿𝐼 being the tensor of the inviscid 

fluxes [𝐟𝒊,1 𝑛
𝛿𝐼 , 𝐟𝒊,𝟐,𝒏

𝛿𝐼 ] at the interface between two adjacent elements” [10].  
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(2.13)  

(2.14)  

(2.15)  

2.4.2 Flux Reconstruction approach 

The FR approach considers the differential form of the equations and when applied to the 

two-dimensional Euler equations, the matrix form reads:  

𝑑𝐮̂𝑛
𝛿

𝑑𝑡
= {𝐃𝜉𝐟𝒊,1 𝑛

𝛿𝐷 + 𝐃𝜂𝐟𝒊,2,𝑛
𝛿𝐷 − 𝐛̃ 

𝐹𝑅},     

where 𝐃𝜉 , 𝐃𝜂 are the differentiation matrices with respect to 𝜉 and 𝜂, 𝐟𝒊,1 𝑛
  and 𝐟𝒊,2,𝑛

  are 

the elemental nonlinear fluxes and 𝐛̃ 
𝐹𝑅 is the boundary term:  

𝐛̃ 
𝐹𝑅 = (ℋ̃𝒊

𝛿𝐶 . 𝐧𝑒)
 
 𝚿′ = [(ℋ̃𝒊

𝛿𝐼 . 𝐧𝑒)
 
− (ℋ̃𝒊

𝛿𝐷𝐼 . 𝐧𝑒)
 
  ] 𝚿′ ,     

“with 𝚿′  being the derivative of the correction function, ℋ̃𝑖
𝛿𝐼  being the tensor of the 

numerical inviscid fluxes [𝐟𝒊,𝟏 𝒏
𝛿𝐼 , 𝐟𝒊,𝟐

𝛿𝐼] at the interface between two adjacent elements and 

and ℋ̃𝑖
𝛿𝐷𝐼 being the tensor of the inviscid fluxes evaluated at the boundary of a given 

element” [10]. 

The final form of the DG and FR method can then be advanced in time via any explicit time 

discretisation scheme. In order to generate a stable numerical scheme, the coupling needs to be 

based on the natural propagation of the information.  For the advection term of the compressible 

Navier-Stokes equations, the boundary term ℋ𝑖
𝛿𝐼  is calculated via a Riemann Solver. An 

intermediate flux at the interface between two adjacent elements is calculated by using 

characteristic information coming from an eigenvalue analysis of the equations and may contain 

information from the left (+) or right (-) faces of a given interface:  

ℋ̃𝒊
𝛿𝐼 = ℋ̃𝑖

𝛿𝐼(𝒖̂+
𝛿 , 𝒖̂−

𝛿 ). 

In this work, we consider a weak implementation of the boundary conditions. Consequently, the 

term ℋ̃ 
𝛿𝐼 is responsible for the boundary conditions to be correctly transferred into the domain 

via a ghost state or direct calculation of the boundary term using the known BCs [10]. 

2.5 Numerical Discretisation for second order problems 

The compressible Navier-Stokes equations consider fluid viscosity and heat conduction and 

consequently are composed by an inviscid and viscous tensor. They are function of the conserved 

variables and of their gradient, and are therefore a second-order system of equations. The 

numerical discretisation of inviscid fluxes are performed as shown in section 2.4 for the Euler 

equations. However, the viscous fluxes are treated differently. Equation 2.1 is split into two 

separate first order equations, an auxiliary equation and the principal equation formed by the 

original problem.  To compute the derivatives of the of the viscous fluxes one need to perform 
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(2.16)  

(2.17)  

(2.18)  

firstly the calculation of the spatial derivatives of the auxiliary variable, and to use these to 

calculate the viscous fluxes. For the DG and FR the numerical interface fluxes are computed 

though the local discontinuous Galerkin (LDG) method as follows:  

𝒖𝑎𝑢𝑥
𝛿𝐼 = {𝒖𝑎𝑢𝑥

𝛿 } ∓ 𝛽[𝒖𝑎𝑢𝑥
𝛿 ], 

ℋ𝑣
𝛿𝐼 = {ℋ𝑣

𝛿} ∓ 𝛽[ℋ̃𝑣
𝛿] − 𝛾[𝑢𝑎𝑢𝑥

𝛿 ], 

where  

{𝒈} =
𝒈+ + 𝒈−

2
,         [𝒈] =

𝒈+𝒏+ + 𝒈−𝒏−

2
,       𝛽 =

1

2
  𝒏+ .  

“with the quantities 𝒈− and 𝒈+ being the variable 𝒈 on the right and on the left side of the 

interface between two elements and with 𝒏+ and 𝒏− being the respective normal. In this case, 

the interface fluxes of the auxiliary variable 𝒖𝑎𝑢𝑥
𝛿𝐼  and of the primitive system ℋ̃ 

𝛿𝐼  are 

responsible for the boundary conditions to be correctly transferred into the domain” [10]. 

2.6 Riemann Solvers 

As seen in section 2.4, the one-dimensional Riemann solvers allow the various elements of the 

DG/FR approach applied to the advection term of the compressible Navier-Stokes to 

communicate and correctly transfer the information. To propagate the information across 

elements we then need to solve a Riemann problem at each interface. 

 When solving a Riemann problem at a given interface, the two-dimensional problem is 

rotated into a one-dimensional problem in the normal direction with respect to the given interface. 

Firstly, the rotation matrix R is applied to the variables u. Secondly, a Riemann solver is used to 

calculate the augmented one-dimensional flux (𝒇(𝒖𝒏) = 𝒇(𝑹𝒖)). Finally, the augmented one-

dimensional flux is rotated back to the Cartesian frame of reference. 

In Nektar++ the solution to the Riemann problem can be obtained through an exact or 

nine approximated Riemann Solvers. The exact solver identifies the wave pattern among the 

well-known ten possible cases and correspondingly calculates the associated numerical flux 

between elements in a Godunov-type approach [11]. The rest of approximated solvers, simplify 

the possible wave pattern configurations. In this work, the HLLC Riemann Solver is considered.  

The accuracy of the exact Riemann solver enhances computational cost. The accuracy obtained 

for previous case studies for the HLLC was the same as the Exact solver while providing lower 

computational cost [12].  
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(2.19)  

2.7 Implementation of the Boundary Conditions 

The nature and implementation of the boundary conditions (BCs) can affect the stability and 

accuracy of a Computational Fluid Dynamics solver, particularly when working with 

compressible flows. In Nektar++ the Compressible Flow Solver focuses on a weak treatment of 

the boundary conditions applied to the compressible Navier-Stokes equations, in which the BCs 

are imposed by modifying the state from which the numerical flux is calculated [10].  Previous 

publications state that weak BCs increase convergence and accuracy over strong BCs [13] [14].  

Farfield Conditions, Inlet case: In the advection term of the compressible Navier-Stokes 

equations, the Weak-Riemann approach is used for applying the BCs. This method specifies all 

the variables at the boundary from free-stream conditions. The external (ghost) state is used as 

the right state. Once the left (inner) and a right state are set, it solves a Riemann problem and 

calculate the boundary intercell numerical flux, taking automatically into account the eigenvalues 

of the Euler equations [12]. This method is proved to be identical to a Weak-Prescribed Riemann-

invariant approach. This is based on a characteristic approach, where the Riemann invariants are 

calculated and correspondingly applied as BCs. The solver automatically considers if the 

boundary is an inflow or outflow. The method is also known as no-reflective BCs as it damps the 

spurious reflections from the boundaries [9]. 

Farfield Conditions, Outlet case: The characteristic approach presented for the Euler 

equations for farfield boundaries, works also for the advective flux of the Navier-Stokes 

equations in regions where viscosity effects can be neglected, as is it the case of the inlet. 

However, in the outlet shedding is present, so viscosity effects become important. In this case, 

the characteristic treatment of the BCs generates spurious oscillations polluting the overall 

solution and leading to numerical instabilities. To deal with this, Nektar + + implements a 

method based on the so-called sponge terms, modifying the RHS of the compressible NS 

equations as follows:  

𝜕𝒖

𝜕𝑡
+

𝜕𝒇1

𝜕𝑥1
+

𝜕𝒇2

𝜕𝑥2
= 𝜎(𝒙̅)(𝒖𝑟𝑒𝑓 − 𝒖), 

where 𝜎(𝒙̅) is a damping coefficient defined in a region 𝒙̅ in proximity to the boundaries and 

𝒖𝑟𝑒𝑓 is a known reference solution. The length and the shape of the damping coefficient depend 

on the problem being solved [9]. 

In the outlet of this thesis study case viscous effects are important, which means that BCs 

are applied differently to recover the physical solution. The advection term is treated in a Weak-

Riemann sense. Nektar++ automatically detects the outflow is subsonic, for which the pressure 
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(2.20)  

is estimated on the ghost state and the density and velocity are extrapolated from the interior of 

the domain. Notice, this is a reflective implementation that combined with the sponge region 

become fully non-reflective. Regarding the diffusion term of the Navier-Stokes equations a LDG 

operator is used. Therefore, the values of the auxiliary variables are directly imposed, which 

means the BCs are applied in a Weak-Prescribed sense [10]. 

2.8 De-Aliasing Strategies 

Aliasing effects, arising as a consequence of the nonlinearity of the underlying problem, need to 

be address to stabilise the simulations. Aliasing appears when nonlinear quantities are calculated 

at an insufficient number of quadrature points. We can identify two types of nonlinearities:  

• PDE nonlinearities, related to the nonlinear and quasi-linear fluxes. 

• Geometrical nonlinearities, related to the deformed/curves meshes. 

We consider two de-aliasing strategies based on the concept of consistent integration: 

• Local dealiasing: It only targets the PDE-aliasing sources, applying a consistent 

integration of them locally.  

• Global dealiasing: It targets both the PDE and the geometrical-aliasing sources. It requires 

a richer quadrature order to consistently integrate the nonlinear fluxes, the geometric 

factors, the mass matrix and the boundary term.  

In this thesis, a global dealiasing technique is used. In the way in which Nektar++ is implemented, 

since the PDE and geometric aliasing are tackled separately during the projection and solution of 

the equations, to consistently integrate all the nonlinearities the quadrature points should be 

selected based on the maximum order of the nonlinearities:  

𝑄𝑚𝑖𝑛 = 𝑃𝑒𝑥𝑝 +
max (2𝑃𝑒𝑥𝑝, 𝑃𝑔𝑒𝑜𝑚)

2
+

3

2
, 

where 𝑄𝑚𝑖𝑛  is the minimum required number of quadrature points to exactly integrate the 

highest-degree of nonlinearity, 𝑃𝑒𝑥𝑝  being the order of the polynomial expansion and 𝑃𝑔𝑒𝑜𝑚 

being the geometric order of the mesh. Bear in mind that we are using a discontinuous 

discretisation, meaning that aliasing effect are not fully controlled, since the boundary terms 

introduce non-polynomial functions into the problem [15]. 
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(2.21)  

(2.22)  

2.9 Non-Smooth Artificial Viscosity 

When dealing with compressible flows it is usual the presence of abrupt changes in density, often 

referred to as shocks. According to the Gibbs phenomena, discontinuities within the flow domain 

lead to numerical instabilities. To stabilise the flow, Nektar++ utilises a shock capturing 

technique which makes use of artificial viscosity to damp the numerical fluctuations, in 

conjunction with a sensor algorithm to decide where the artificial viscosity is required. The sensor 

calculated the smoothness of the solution in the following way:  

𝑆𝑒 =
‖𝜌𝑒

𝑝 − 𝜌𝑒
𝑝−1‖

𝐿2

‖𝜌𝑒
𝑝‖

𝐿2

, 

Depending on the local value of the sensor, an artificial diffusion term is locally added to the 

Navier-Stokes equations.  

     In this work, we have made use of the non-smooth artificial viscosity model, in which the 

viscosity is constant in each element and discontinuous across elements. The artificial viscosity 

is modelled by adding a Laplacian term on the right-hand side of equation 2.1. The diffusivity is 

then controlled with the value of the coefficient  𝜖 defined as:  

𝜖 = 𝜖0 {

      0                               𝑖𝑓  𝑆𝑒 <  𝑠𝜅 −  𝜅

0.5(1 + sin
𝜋(𝑆𝑒 − 𝑠𝜅)

2𝜅
  )            𝑖𝑓 𝑠𝜅 −  𝜅 <  𝑆𝑒 <  𝑠𝜅 +  𝜅

            1                               𝑖𝑓  𝑆𝑒 >  𝑠𝜅 +  𝜅      

            

where 𝜖0  is the maximum values for the viscosity coefficient, 𝜅  is half of the width of the 

transition interval and  𝑠𝜅 is the value of the centre of the interval [16]. 
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Table 3.1 and Figure 3.1: T106A low-pressure blade cascade specifications from Stieger [22]. 

                                                                            Chapter 3 

Problem Formulation 

In this chapter, the problem formulation is described. Firstly, the flow geometry and mesh used 

to perform Direct Numerical Simulation are presented. Secondly, the boundary and the initial 

conditions are outlined. Finally, the solver configuration is described. 

3.1 Flow Geometry and Mesh 

The T106A low-pressure turbine cascade has been studied extensively both in experiments [17] 

[18], and numerical simulations [19] [2] [20].The T106A profile represents the mid-span of the 

Pratt and Whitney PW2037 rotor airfoil [21]. The geometrical details are shown in Table 3.1 and 

the blade geometry is illustrated in Figure 3.1 [22]: 

 

 

The mid-span section of a single passage of the cascade is meshed, using periodic 

boundary conditions both in the pitch and span directions. It is important to highlight the use of 

a mixed mesh, consisting of triangular and quadrilateral elements. 

 
Figure 3.2: Complete view of the computational domain and mesh. 

Chord 198mm 

Axial chord  170mm 

Blade stagger  30.7° 

Pitch 158 mm 

Span 375 mm 

Suction surface length 264.7 mm 

Pressure surface length 230 mm 

Design exit flow angle 63.2° 
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(3.1)  

(3.2)  

The resolution requirements in near-wall regions is an important matter. The boundary layer is 

captured when the cell in the boundary layer is of the order of the dimensionless wall distance 

y+. To facilitate this, the mesh is refined in the surface of the turbine blade as described in Table 

3.2. Note the approximated value of wall spacing of the mesh Δ𝑦, used in section 3.1.1, is 0.002. 

Parameters Value 

∆𝑠𝑚𝑖𝑛 0.02 

∆𝑠𝑚𝑎𝑥 0.05 

Order 6 

Boundary Layer Thickness 0.008 

Boundary Layer Layers 4 

Boundary Layer Progression 1.1 

 

               Table 3.2: Mesh conditions.                          Figure 3.3: Boundary layer of the mesh. 

3.1.1 Spatial Resolution for Direct Numerical Simulation  

When aiming direct numerical simulation, spatial resolution is a crucial factor. The smallest 

length scale is captured when the mesh spacing in wall units meets the following criteria [23]:  

∆𝑥𝑤𝑎𝑙𝑙
+ =

Δ𝑥

𝛿𝜈𝑃
< 20        ,         ∆𝑦𝑤𝑎𝑙𝑙

+ =
Δ𝑦

𝛿𝜈𝑃
< 1 , 

where P is the polynomial order of the expansion basis and Δ𝑥 and Δ𝑦 are the wall spacing of 

the mesh in the tangent and normal directions to the blade surface respectively. The viscous 

length scale 𝛿𝜈 is calculated at each point of the blade by extracting the local shear stress and 

density along the blade:  

𝛿𝜈 ≡ 𝜈√
𝜌

𝜏𝑤
 

In this work, a low Reynold number of 8,000 is firstly imposed and then it is increased to a 

moderate Reynolds number of 60,000. The Kolmogorov length scale is inversely proportional to 

the Reynolds number. However, the mesh used for both cases is identical. Thus, an increment of 

the polynomial order for the higher Reynolds number is required to resolve all the spatial length 

scales. This fact illustrates the benefit of using the spectral/hp element method, less number of 

elements are required to achieve the same level of resolution than in low-order methods due to 

an enhanced resolution power. The polynomial order for each case is tuned to provide adequate 

spatial resolution. The polynomial expansion order P used for the Reynolds number of 8,000 

cases is 6. For the Reynolds number of 60,000 and Mach 0.1 the polynomial order is 13.  
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The spatial resolution for the Reynolds 8,000 cases is illustrated in Figure 3.4 and 3.5. Figure 3.6 

displays the spatial resolution at Reynolds 60,000. The difference in the smoothness in both 

directions is due to a constant wall spacing ∆𝑦 and a varying ∆𝑥. 

 
Figure 3.4: DNS Spatial Resolution in x for Reynolds number of 8,000. 

 
Figure 3.5: DNS Spatial Resolution in y for Reynolds number of 8,000. 

 
Figure 3.6: DNS Spatial Resolution in x and y for Reynolds number of 60,000. 
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(3.3)  

3.1.2 Quadrature Points 

When studying relevant industry problems, complex geometries comprised of curved 

elements are present. This gives raise to global aliasing sources as explained in section 2.8. The 

global de-aliasing technique is used to tackle both the PDE and geometric aliasing. As defined 

in the Table 3.2, the geometric mesh order 𝑃𝑔𝑒𝑜𝑚  is equal to 6. Consequently, the minimum 

number of quadrature points to consistently integrate the highest-degree of nonlinearity is:  

𝑄𝑚𝑖𝑛 = 𝑃𝑒𝑥𝑝 +
max (2𝑃𝑒𝑥𝑝, 6)

2
+

3

2
, 

𝑃𝑒𝑥𝑝 corresponds to the order of the polynomial expansion, this is 6 in the case of a Reynolds 

number of 8,000 and 13 in the case of 60,000. Consequently, the number of quadrature points 

used are 𝑄 = 14 at a Reynolds 8,000 and 𝑄 = 28 at a Reynolds of 60,000. 

Even though global aliasing effects were tackled, the fact that we are using a 

discontinuous discretisation means that aliasing effects are not fully under control, since the 

boundary terms introduce non-polynomial functions into the problem. This means that, although 

de-aliasing techniques are enough to stabilise the flow in multiple research studied, in the present 

study stability is not guaranteed [15]. 

3.2 Boundary Conditions 

The real flow in turbine blades of a gas turbine is unsteady with convected disturbances from 

upstream components and potential disturbances from upstream and downstream.  The rotor-

stator interaction arises from the convection of wakes shed from upstream blade rows. This 

periodic shedding causes unsteady effects on the blade surface boundary layers and has been 

proved to have important effects downstream, inspiring numerous studies [21]. However, in this 

thesis, the upstream wakes are neglected, where a clean steady inlet condition is defined. 

Therefore, this is only a good approximation for the first blade row of the turbine.  

In this work, various case studies have been compared. At the inlet, two different 

Reynolds numbers have been studied, a Reynolds number of 8,000 and 60,000. The inlet Mach 

number cases to assess the compressibility effects are 0.1, 0.15 and 0.2. The Prandtl number 

selected is 0.72. Finally, the inlet flow angle is chosen as 37.7º in all the cases to be consistent 

with previous experiments [22] [24]. In the Compressible Flow Solver, the boundary conditions 

are weakly implemented, which means that the BCs are applied to the fluxes. As a result, the 

pressure and the density in the inlet are required. The values for the inlet pressure and density are 

chosen according to the T106C turbine blade cascade previously run in Nektar++ (MMC S11 

case [8]).  
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For the compressible Navier-Stokes equations a non-slip condition must be applied to the 

velocity field at a solid wall, which corresponds to the blade for this problem. The blade wall is 

defined as an isothermal wall with imposed temperature Twall = 146.21K.  

     Finally, note that periodic boundary condition for all flow quantities is imposed in the pitch 

and span directions to represent a turbine cascade configuration. 

3.3 Initial Conditions 

When starting the Compressible Flow solver with an initial condition that differs from 

the solution, waves initially develop giving stability problems (see Figure 3.7). The numerical 

instabilities caused by the flow discontinuities were controlled by introducing artificial viscosity. 

Throughout the numerous cases run in this thesis, the smooth artificial viscosity model failed to 

produce stable simulations. Otherwise, the non-smooth model managed to alleviate stability 

issues. The parameters controlling the diffusivity coefficients were set to 1 for the maximum 

value for the viscosity coefficient 𝜖0; -1.3 for the value of the centre of the interval  𝑠𝜅 and 0.2 

corresponding to half the width of the transition interval.  

In the Reynolds number of 8,000 case, the flow is impulsively started as no previous 

simulations were performed. For Reynolds number case of 60,000 the flow obtained from the 

8,000 Reynolds number is set as initial conditions. 

Figure 3.7: Instantaneous density waves created when initializing the flow. a) Reynolds number of 

8,000 b) and c) Reynolds of 60,000. 

The simulations were run until the flow stabilises and the discontinuities disappear. This section 

assesses the time required to run the simulation before the stabilised output flow solution is set 

as initial conditions.  Apart from visualizing the instantaneous flow field, the kinetic energy trend 

was plotted against the simulation time. In this thesis, the simulation time is expressed in terms 



17 
 

of equivalent chord lengths. The kinetic energy graph helped to determine the number of 

equivalent chord lengths required for stabilising the flow and avoiding the average quantities to 

be polluted. The kinetic energy evolution and the visualization of the instantaneous flow field 

suggested that the flow can be re-initialized after four equivalent chord lengths. 

 

 Figure 3.8: Kinetic Energy Evolution. a) Reynolds number 8,000. B) Reynolds number 60,000. 

3.4 Solver Configuration 

This section declares how the flow will be solved by specifying the equations to solve, the 

projection type, the advection and the diffusion operators used, the Riemann solver implemented, 

the time-integration scheme, and the parameters of the artificial viscosity. In addition, the time 

average filter setting is introduced. 

3.4.1 Equations and Projection Type 

The effects of fluid viscosity and heat conduction as well as compressible effects are included. 

Consequently, the equations to solve are the compressible Navier-Stokes equations. In Nektar++ 

the spatial discretisation of the compressible Navier-Stokes equations is projected in the 

polynomial space via discontinuous projection. Specifically, we make use either of the 

discontinuous Galerkin or the Flux-Reconstruction approach. Consequently, the Projection type 

is set to discontinuous as continuous projection is not supported in the Compressible Flow Solver. 

3.4.2 Advection and Diffusion Operators 

In order to reduce the computational cost, it was attempted to use the FRG2 scheme. This scheme 

would allow for a twice bigger time step and a consistent speed-up of the simulations performed. 

The coupling of these schemes with the dealiasing techniques would permit maintaining 

numerical stability, thus preventing the simulations to fail due to aliasing-drive instabilities. 

However, FRG2 is not implemented for triangular elements. The use of a mixed elements mesh 

lead to the selection of the classical Discontinuous Galerkin in weak form. As per section 3.2, a 

global de-aliasing technique is implemented, where the number of quadrature points Q is larger 
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(3.4)  

(3.5)  

(3.6)  

(3.7)  

(3.8)  

than the polynomial order inside each element P. This scheme is denoted by 𝐷𝐺𝑄>𝑃 − 𝐸𝑀𝑀. 

The term exact mass matrix (EMM) refers to when solving a fully linear problem [12]. This 

method is the most accurate but also the most restrictive in terms of time-step. In this thesis, the 

diffusion term was discretised with the Local Discontinuous Galerkin approach (LDG) presented 

in section 2.5. 

3.4.3 Time-integration Scheme 

A critical aspect of the Compressible solver is that it only supports explicit time-integration 

schemes. The stability of such schemes is governed by the CFL condition, which requires the 

space-time analytical domain of dependence to be contained within the numerical one.  

 The evaluation of the time-step limit restriction consists in bounding the largest 

eigenvalue 𝜆𝑚𝑎𝑥 of the advection operator [9].  

∆𝑡 . 𝜆𝑚𝑎𝑥  ≤ 𝑐𝑜𝑛𝑠𝑡 

The maximum eigenvalue in a general domain follows:  

𝐶𝜆(𝐯, ℎ)𝑃2 > 𝜆𝑚𝑎𝑥 

being h the characteristic length, 𝐯 the local advection velocity and P is the polynomial order of 

the solution. The time-step restriction is bounded then by:  

∆𝑡 ≤
𝛼

𝐶𝜆(𝐯, ℎ)𝑃2
 

where 𝛼 represents the distance from the origin of the boundary of the stability region along the 

azimuthal of the dominating eigenvalue 𝜆𝑚𝑎𝑥, and 𝐶𝜆(𝐯, ℎ) can be estimated by:  

𝐶𝜆(𝐯, ℎ) ≈
𝑐𝜆

ℎ
𝑚𝑎𝑥|𝐯𝑒| 

where 𝑐𝜆 is a constant [7], 𝐯𝑒 corresponds to the velocity in the element e and h is the size of the 

element. Combining equations 3.6 and 3.7 the time step restriction follows:  

𝑚𝑎𝑥|𝐯𝑒|
𝑐𝜆

ℎ
𝑃2∆𝑡 ≤ 𝛼 

Thus, the time step restriction is directly proportional to the mesh spacing and inversely 

proportional to the square of the polynomial order used, which makes it a very restrictive 

requirement in the case of high Reynolds numbers. 

 For the time-step to ensure that the error from the time-stepping scheme is negligible 

compared to the spatial discretisation, it needs to be 100 times lower than the time-step limit 

imposed by the Courant-Friedichs-Lewy condition [25]. This is however, a very demanding time-
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step restriction, only feasible for short final output times, as cases studying the connections 

between different schemes [12] [9]. In this work, the initial conditions are set after 4 equivalent 

chord lengths, and the flow field variables are time averaged over 4 equivalent chord lengths. 

The longer simulation time makes unfeasible the use of such restrictive time step. Hence, the 

time-step was selected to be three times smaller than the maximum time step allowing the 

simulation to remain stable (∆𝑡𝑚𝑎𝑥) [12].  

For all the simulations, the time integration method implemented is the 4th order Runge-

Kutta. Even though this method is more expensive, the 4th order Runge-Kutta was selected 

because of its  more satisfactory stability region for many benchmark studies [12][9].   

3.4.4 Riemann Solver for the Advection Operator 

As described in section 2.6, a Riemann problem is solved at each interface of the 

computational domain for the advection term. Nektar + + provides ten different Riemann solvers, 

one exact and nine approximated. The Exact Toro solver, solves the conservation problem by 

using a Newton iterative method. The order of accuracy of the exact solver is related to the 

residual in the Newton method, which implies higher computational cost. On the other hand, the 

approximated Riemann solvers do not take into account the full Riemann problem, these 

simplifications of the exact solver provide lower computational cost but lower accuracy [16]. In 

this thesis, the numerical flux has been calculated through the HLLC (Harten, Lax, van Leer + 

Contact) Riemann solver. The reasons for the choice being the lower computational time against 

the Exact Toro while maintaining a similar accuracy. The accuracy of the Exact Toro and the 

HLLC Riemann solvers have been proved the same in several benchmark tests [9]. 

3.4.6 Time Averaging Filter 

After initial conditions are set following results in section 3.3, one needs to assess the 

time required to dump averages. This section explains the process to select the time to average 

the unsteady flow quantities.  

The average flow field was computed over four consecutive equivalent chord lengths. 

Apart from the averaged flow field accumulated over the four equivalent chord lengths, two more 

averaged flow fields were generated. One averaged flow field was created after the first two 

equivalent chord lengths and a second average flow field of the last two chord lengths. The 

averaged quantities of the three averaged fields were compared ensuring convergence when 

averaging over four equivalent chord lengths. 
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The difference between the pressure coefficient averaged over two and four equivalent 

chord lengths was analysed in Figure 3.9. The maximum error when averaging over two 

equivalent chord lengths is 2.2% the value of the maximum pressure coefficient. Thus, the error 

averaging over four equivalent chord lengths is lower. 

 

Figure 3.9: Time averaged pressure coefficient with varying averaging time at Reynolds 60,000.  

For the friction coefficient, the maximum difference is less than 1% the value of the 

maximum friction coefficient. Results show that four equivalent chord lengths are enough to 

achieve convergence of the averaged flow fields at a Reynolds number of 60,000. Also, results 

confirm that the initial conditions are well selected as they are not affecting the time average 

results. 

 

Figure 3.10:  Time averaged friction coefficient with varying averaging time at Reynolds 60,000.   
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                                                                            Chapter 4 

Simulation Results 

This thesis assesses the importance of moving towards a more accurate result by running the 

simulations over the T106A blade cascade with the Compressible Solver instead of with the 

Incompressible Navier Stokes Solver. Firstly, the importance of compressibility effects is 

analysed by comparing the Incompressible and Compressible Solver results under three different 

Mach numbers of 0.1, 0.15 and 0.2. The simulations are performed under a low Reynolds number 

of 8,000 and subsequently, the Reynolds number is increased to 60,000. This thesis evaluates the 

time-averaged pressure and friction coefficients, the time-averaged boundary layer profile and 

the boundary layer parameters along the blade. The study of these parameters concludes that 

compressibility effects play an important role. However, the use of the Compressible Flow Solver 

presents three main downsides. It requires larger computational time, the inlet specifications are 

less precise and the user-guide is incomplete.  

4.4 Compressibility Effects 

Initially, a low Reynolds number of 8,000 is used under different Mach numbers to 

understand the importance of the compressibility effects. The results obtained with the 

Incompressible and Compressible solvers are compared under three different Mach numbers of 

0.1, 0.15 and 0.2. The comparison shows how the solution given by the Compressible Flow solver 

converges to the solution of the Incompressible solver as the compressibility effects become 

negligible. It is concluded that compressibility effects play an important role in the study of the 

T106A turbine blade cascade even when the Mach number is low. Firstly, the pressure and 

friction coefficients are compared. Secondly, the separation point difference by both solvers is 

examined. Finally, the boundary layer profiles and parameters along the blade are studied. 

4.4.1 Pressure Coefficient 

The pressure coefficient (Cp=
p-p∞

1

2 
 ρ∞U∞

2
) obtained by the Incompressible and Compressible 

solvers for the three different Mach numbers is presented in Figure 4.1 and Figure 4.2. Note that, 

the pressure coefficient result obtained by both solvers diverges towards the leading edge at the 

suction surface. The difference between the pressure along the blade for the three different Mach 

numbers is shown in Figure 4.2b. The difference is expressed relatively to the maximum value 

of the pressure coefficient. Predictably, as the Mach number increases, the compressibility effects 

become more important and the solutions greatly differ. For the Mach number of 0.2 the 

maximum difference is more than 20% of the maximum CP value. As the Mach number reduces, 
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the Compressible and Incompressible results tend to converge. However, even for the lowest 

Mach number of 0.1 the difference is above 5% towards the trailing edge of the suction surface.  

 
Figure 4.1: Averaged pressure coefficient along the surface of a T106A turbine blade at Reynolds 8,000  

a) Mach number 0.1  b) Mach number 0.15 

   
Figure 4.2: Averaged pressure coefficient along the surface of a T106A turbine blade at Reynolds 8,000  

a) Mach number 0.2  b) Difference between Incompressible and Compressible solver. 

4.4.2 Friction Coefficient and Separation Point 

Figure 4.3 and 4.4 illustrate the time-average skin friction coefficient (Cf =
‖𝜏‖

1

2 
 ρ∞U∞

2
) 

obtained by both solvers for the three different Mach number cases. The friction coefficient 

calculated by means of both solvers present more similar results than the pressure coefficient, 

being almost identical for the Mach number 0.1 case and slightly varying for the Mach number 

0.2 case. As a methodology to quantify this variance, the location of the separation point for the 

Incompressible and Compressible solver was compared. The separation point for a two-

dimensional flow corresponds to the point of zero wall shear stress. Beware that, as the Reynolds 

number increases, specifically, for the high Reynolds number case of 60,000, the position of the 
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separation point becomes unstable. Throughout this thesis, the average position of the separation 

point is obtained by analysing the time average friction coefficient.  

Figure 4.4b represents the difference in the separation position obtained by both solvers. 

The deviation is expressed as the ratio between the incompressible and the compressible results. 

The difference in the separation point location is shown to be within a 1.5% for the three cases. 

Predictably, the highest difference is obtained with a Mach number of 0.2. However, the lowest 

difference is not obtained with the lowest Mach number case but with the Mach 0.15. It is 

important to emphasize that, although the difference in percentage is less than in the pressure 

coefficient case, a variation of a 1.5% in the position of the separation point could have critical 

impact in the resultant drag and affect the blade re-design. Consequently, the compressibility 

effects are once more proved to be of utmost important with increasing Mach numbers. 

 
Figure 4.3: Averaged friction coefficient along the surface of a T106A turbine blade at Reynolds 8,000  

a) Mach number 0.1  b) Mach number 0.15 

 
Figure 4.4: Averaged friction coefficient along the surface of a T106A turbine blade at Reynolds 8,000  

a) Mach number 0.2  b) Difference of the separation point location calculated with both solvers.  
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4.4.3 Boundary Layer Velocity Profile 

The boundary layer evolution computed by both solvers is compared along the suction surface 

of the blade. It is shown how for the three Mach number cases, the velocity profile greatly differs 

towards the trailing edge (see Figure 4.6, 4.7 and 4.8). In accordance to the previous results, the 

difference increases with the Mach number. In Figure 4.5a, the velocity profile is represented at 

x=0 for the three Mach numbers. At this blade coordinate, the velocity profiles for the 

incompressible and compressible case coincide. In Figure 4.5b, the velocity profiles are 

represented at x/cx = 0.71. In this figure, it is noticeable the increment in the difference between 

both solvers results as the Mach number grows. Notice in Figure 4.5a that, the velocity at the 

inlet are 20, 30 and 40 m/s corresponding to a Mach number of 0.1, 0.15 and 0.2 respectively.  In 

Figure 4.5b, appreciate that for the Mach number 0.1, the velocity increments to 40m/s, which 

would correspond to a Mach number of 0.2. In the case of Mach number 0.2, the velocity has 

reached 60 m/s which would correspond to a Mach number of 0.3. Finally, for the inlet Mach 

number equal to 0.2, the velocity increases to 80m/s, which corresponds to a Mach number of 

0.4. As widely known, compressibility effects cannot be neglected when the Mach number is 

above 0.3. Therefore, the differences given by the solvers can be associated to compressibility 

effects. Moreover, the compressible solver presents higher velocities in the suction surface, 

which agrees with a lower pressure coefficient as shown in section 4.4.1. Again, compressibility 

effects are proved to be of extreme importance for the T106A turbine blade case. 

 
a) x/cx=0                                                                     b) x/cx=0.71                                                                         

Figure 4.5: Velocity Profile Comparison for Reynolds number 8,000.    a) x/cx=0     b) x/cx=0.71 
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Figure 4.6: Velocity Profile Comparison for Reynolds number 8,000 and Mach 0.1. 

 
Figure 4.7: Velocity Profile Comparison for Reynolds number 8,000 and Mach 0.15. 

 

Figure 4.8: Velocity Profile Comparison for Reynolds number 8,000 and Mach 0.2. 
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(4.1)  

(4.2)  

(4.3)  

4.4.4 Boundary Layer Parameters 

The analysis of the boundary layer is based on a pseudo-velocity defined as:  

𝒖∗(𝒔, 𝑛) ≔ ∫ (𝝎 x 𝒏̂)𝑑𝑛′
𝑛

0

, 

where 𝝎 denotes vorticity, (𝒔, 𝑛) is the set of curvilinear coordinates associated to the airfoil 

surface. In particular, 𝒔 = (𝑠1, 𝑠2) and 𝑛 are the coordinates along the streamwise, cross-flow 

and outward normal to the airfoil directions, respectively. The unit vector associated to these 

coordinates are denoted by 𝑠1̂ , 𝑠2̂ and 𝑛̂ [26]. The benefit of using the pseudo-velocity is that as 

it tends to a constant outside the boundary layer, the edge of the boundary layer becomes a well-

defined location [27]. 

 The BL edge 𝑛𝑒 is calculated as the first location satisfying: 

‖𝝎̅‖ 𝑛 < 𝜖 ‖𝒖∗̅̅ ̅‖ , 

where the overbar denotes temporal averaging and 𝜖  is a tuned constant set to 0.01 for a 

systematic and robust detection of the BL edge [27].  

The boundary layer structure is analysed in terms of the displacement thickness 𝛿∗, the 

momentum thickness θ and the shape parameter H. These parameters are defined as: 

𝛿∗ = ∫ (1 −
𝒖𝟏

𝑢𝑒
)

 𝑛𝑒

0

 𝑑𝑛,           θ = ∫ (1 −
𝒖𝟏

𝑢𝑒
)

 𝑛𝑒

0

𝒖𝟏

𝑢𝑒
 𝑑𝑛,         𝐻 =

𝛿∗

θ
    , 

where 𝒖𝟏 corresponds to the stream-wise velocity and 𝑢𝑒 is the magnitude of the edge velocity. 

 As seen in section 4.4.3, the velocity profiles for the Incompressible and Compressible 

differs towards the trailing edge, and this variance grows with the Mach number. The vorticity 

variance should follow the same behaviour. Consequently, as the boundary layer parameters are 

based on the velocity and vorticity values, we expect them to match at the leading edge and 

progressively disagree towards the trailing edge. The contrast being augmented for higher Mach 

numbers when higher compressibility effects are present.   

The displacement thickness and the momentum thickness results obtained for the 

Reynolds case of 8,000 are presented in Figure 4.9a, Figure 4.10a and Figure 4.11a. The variance 

observations match with the expectations presented above. Figure 4.9b, 4.10b and 4.11b 

represent the shape parameter for the different Mach numbers along the chord of the blade. Note 

that the BL separation leads to an increase in the displacement thickness and thus the shape 

parameter for the suction surface. 
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Figure 4.9: Boundary layer parameters comparison between solvers at Reynolds 8,000 and Mach 0.1. 

a) Displacement and momentum thickness.   b) Shape parameter.   

 
Figure 4.10: Boundary layer parameters comparison between solvers at Reynolds 8,000 and Mach 0.15. 

a) Displacement and momentum thickness.   b) Shape parameter.   

  
Figure 4.11: Boundary layer parameters comparison between solvers at Reynolds 8,000 and Mach 0.2. 

a) Displacement and momentum thickness.   b) Shape parameter.   
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4.5 DNS of Flow Over a T106a Turbine at Reynolds 60,000 

The overall conclusion of the analysis performed over the Reynolds number 8,000 case 

in section 4.4 is that compressibility effects are important and should be considered even with 

low Mach number cases. The main goal of the thesis was to perform Direct Numerical Simulation 

of Flow over a T106A low-pressure turbine at a Reynolds number of 60,000 and compare the 

results given by the Incompressible and Compressible solver. In order to minimise 

compressibility effects, simulations are performed with a Mach number of 0.1.  

The flow field quantities are time averaged over four equivalent chord lengths according 

to section 3.4.6. Regarding compressibility effects two facts are visualised. On one hand, in 

Figure 4.12a, the time average Mach number is shown to be restricted to 0.2 in all the flow 

domain. This implies that the problem could be considered as incompressible, expecting similar 

results for both solvers. On the other hand, Figure 4.12b displays the percentage of the density 

with regards to the inlet value. This figure shows how the density in the pressure surface presents 

the same value as at the inlet, expecting negligible compressibility effects. However, at the 

suction surface the density is noticeable smaller, especially towards the trailing edge, where we 

expect compressibility effect, and therefore a diverging solution between the incompressible and 

compressible results. In Figure 4.12c, the time average artificial viscosity value is visualized. 

This confirms that once the flow has been initialized with a stabilised flow field, artificial 

viscosity is no longer required to acquire a stable simulation. 

 

        
Figure 4.12: Time Averaged quantities for Reynolds number 60,000 at Mach 0.1. 

a) Mach number. b) Density.  c) Artificial Viscosity.  d) Vorticity  
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4.5.1 Comparison Between Incompressible and Compressible 

Firstly, the pressure coefficient results were evaluated. The variance obtained by both 

solvers is contained within a 10% percentage range. This limit of a 10% variance is identical to 

the one obtained for the Reynolds 8,000 at Mach number 0.1 case.    

     

Figure 4.13: Averaged pressure coefficient along the surface of a T106A blade at Reynolds 60,000. 

a) Mach number 0.1.  b) Difference between compressible and incompressible solvers. 

Secondly, the skin friction coefficient obtained by both solvers was compared. The 

difference in the friction coefficient is greater than the found for the Reynolds 8,000 case. The 

difference in the location of the separation point triples, exceeding a 2% variance. 

   

Figure 4.14: Averaged friction coefficient along the surface of a T106A turbine blade at Reynolds 60,000.  

a) Mach number 0.1.  b) Difference in separation point between compressible and incompressible solvers. 
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Lastly, the boundary layer is analysed in the suction surface. The result obtained by both 

solvers agrees close to the leading edge and the difference in the velocity profiles towards the 

leading edge is incremented. The velocity profile of the compressible flow solver shows higher 

values than the incompressible towards the trailing edge, which agrees with the previous results 

encountered. Separation was found to happen later in the compressible than in the incompressible 

case. An important fact is that at the trailing edge, the Compressible Flow solver shows positive 

values of the velocity in all the profile and positive shear stress in a definite. However, this is not 

observed for the Incompressible case, where the velocity in the trailing edge continues to be 

reversed. These facts match with a lower displacement thickness and shape parameter for the 

Compressible case and a steeper decrement of both parameters towards the trailing edge seen in 

Figure 4.16 and 4.17. 

 

Figure 4.15: Velocity Profile Comparison for Reynolds number 60,000 and Mach 0.1. 

 

Figure 4.16: Displacement and momentum thickness boundary comparison between solvers at Reynolds 

60,000 and Mach 0.1. 
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(4.4)  

 
Figure 4.17: Shape parameter comparison between solvers at Reynolds 60,000 and Mach 0.1. 

4.6 Time Step Restriction 

The time step restriction presented by the Incompressible and Compressible Flow solvers was 

compared and presented in Figure 4.18. The maximum time step for running a stable simulation 

was examined for a Reynolds number of 8,000 and 60,000 and the three different Mach number 

cases of 0.1, 0.15 and 0.2. The time step is expressed in terms of the non-dimensional time step 

∆𝑡. 𝑢𝑖𝑛𝑙𝑒𝑡 (the characteristic length is equal to one). 

The Compressible solver uses explicit time-integration schemes. The stability of these is 

governed by the CFL condition and according to section 3.4.3, the time-step restriction follows:  

𝑚𝑎𝑥|𝐯𝑒|
𝑐𝜆

ℎ
𝑃2∆𝑡 ≤ 𝛼 

For the Reynolds number 8,000 cases the same mesh and polynomial order are used. According 

to section 4.4.3 the maximum velocity for all the cases is approximately twice the inlet velocity 

(𝑚𝑎𝑥|𝐯𝑒| ≈ 2𝑢𝑖𝑛𝑙𝑒𝑡). Being 𝑐𝜆, 𝛼, ℎ and 𝑃 constants, and knowing 𝑚𝑎𝑥|𝐯𝑒| is approximately 

twice the inlet velocity, the non-dimensional time-step restriction ∆𝑡𝑚𝑎𝑥. 𝑢𝑖𝑛𝑙𝑒𝑡 for the Reynolds 

number 8,000 is expected to be constant, which is confirmed in Figure 4.18- . 

 For the Reynolds number 60,000 different polynomials order have been used to meet 

DNS requirements for the three Mach cases. Note that in this case, we expect the relation 

𝑢𝑖𝑛𝑙𝑒𝑡∆𝑡𝑚𝑎𝑥𝑃2 to be constant, which is shown to be met in Figure 4.18- . 

The Incompressible solver uses a semi-implicit time-integration scheme presenting a 

much less restrictive CFL condition. For the Reynolds number of 8,000 the Compressible time 

step is in average 26 times smaller than the Incompressible case. The least difference is 20 times 

smaller for the Mach 0.2 case and the greatest difference is 36 times smaller for the Mach number 
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0.1. For the Reynolds number 60,000 the compressible time step is 15 times smaller in average, 

with the maximum difference being 16 for the Mach number 0.1 and a minimum difference of 

14 for the Mach number 0.15 case. 

 
Figure 4.18: Time Step Limitation Comparison between solvers. 

4.7 Inlet Boundary Condition Comparison 

A critical factor when conducting simulations with the Compressible Flow solver are the 

specification of the inlet conditions. Initially, equivalent boundary conditions were prescribed 

for the incompressible and compressible simulations. However, the results obtained presented 

differences that could not be solely attributed to compressibility effects. Alternatively, the 

discrepancies were the result of inexact imposition of the inlet boundary conditions in the case 

of the Compressible Flow solver. Figure 4.19 shows the ratio between the prescribed and the 

actual inlet boundary conditions for the density, pressure, velocity and inlet angle.  

 The inequality becomes more significant as the Mach number increases. The same 

behaviour was visualized at a Reynolds of 60,000, but with an incremented disparity. 

 
Figure 4.19: Inlet Conditions Discrepancy for the Reynolds number 8,000. 
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(4.4)  

4.8 Scaling of the Parallel Simulation 

In this section a study of the scalability of the parallel simulation is conducted over the Reynolds 

number 60,000 case. This work focuses on a strong scaling approach, in which the problem size 

stays fixed and the number of CPUS are increased. To assess the scalability, the speed-up SN and 

the efficiency EN are measured. These parameters are calculated as:  

𝑆𝑁 =  
𝑇1

𝑇𝑁
           ,       𝐸𝑁 =  

𝑆𝑁

𝑁
 

where 𝑇1 is the mean CPU time required to compute a time step when using one CPU and 𝑇𝑁 is 

the mean CPU time when using ‘N’ number of CPUs. 

 Figure 4.20 shows the average computational time per time step against the number of 

CPUs. It shows that increasing the number of processes the computational time decreases, 

approximately matching the slope of CPU-1. Appreciate that the computational time tends to a 

constant minimum value for approximately 2500 CPUs. From this point on, the time step barely 

experiments changes, but the efficiency quickly decreases (see Figure 4.22). The speed-up 

against the number of CPUs is presented in a logarithm scale axis in Figure 4.21. In this figure, 

it is better visualised the tendency of the computational time to reduce matching CPU-1. Lastly, 

Figure 4.22 displays the efficiency against the number of CPUs used. Initially, as the number of 

CPUs grows, the efficiency increases, achieving a maximum of 1,5 for a number of CPUs close 

to a thousand.  

 

Figure 4.20: Computational time per time-step against the number of CPUs. 
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 Figure 4.21: Speed-up against the number of CPUs. 

 
Figure 4.21: Efficiency against the number of CPUs. 
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                                                                            Chapter 5 

Conclusions and Future Work 

The Spectral/HP element method has been implemented in the open source Nektar++ to perform 

DNS on a T106A turbine blade cascade. The flow simulations were performed by solving the 

compressible Navier-Stokes equations via the Compressible Flow solver. The thesis aims to 

provide future advice on the use and development of the Compressible Flow solver. The 

conclusions on the thesis are divided in two sections. First section focuses on the users of the 

compressible flow solver, with the objective of facilitate the set up and attract people to use the 

solver. The second section focuses on the development of the code, with the objectives of 

developing a more stable code and build a more practical solver. 

5.1 User Focused Conclusions and Future Work 

One of the main downsides of working with the Compressible Flow solver is that Nektar++ user-

guide is incomplete and no tutorials were implemented for this solver.  

In section 3.3, the importance of the artificial viscosity was highlighted. The smooth 

artificial model did not run successfully for the cases tested while the non-smooth model resulted 

to be the optimal solution. However, the user-guide explained how to turn on the smooth artificial 

viscosity model while the non-smooth model was not explained. The user guide has been updated 

to illustrate the user how to turn the non-smooth model on. As future work, I would suggest 

concluding if the smooth artificial viscosity model is also a good solution. If this model fails, the 

user-guide should be updated to remove the explanation and set up of the smooth artificial model.  

In addition, de-aliasing was concluded to have a critical impact on the stability of the 

solver. As introduced in section 2.8, there are two different strategies, namely a local and a global 

de-aliasing techniques. The user-guide did not present any section mentioning de-aliasing errors. 

The user-guide has been updated to introduce the user to both de-aliasing strategies existing. The 

way to turn them on in Nektar ++ is different. In this thesis, global de-aliasing technique has been 

proved to give accurate and stable results and therefore its set up has been included in the user-

guide.  

In order to introduce the user to the spectral/hp element framework Nektar++ and to 

describe the main features of its Compressible Flow Solver in a simple manner a tutorial for the 

compressible Navier-Stokes equations presented in the Compressible Flow solver has been 

developed and it is attached is appendices. Additionally, it would be beneficial to create a tutorial 

for the Euler equations.  
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As a general conclusion, I personally consider of extreme importance to update the user-

guide with any new technique developed in the code.  

5.2 Code Development Conclusions and Future Work 

From Section 4, it is concluded that the differences obtained with the Incompressible and 

Compressible solvers are a consequence of compressibility effects. This in an important fact as 

during the project numerous modules have been newly incorporated to the Compressible Flow 

Solver by the developers. By post-processing the results it was tested that vorticity, wall shear 

stress and time averaging modules were giving correct results. Moreover, developers updated the 

time averaging module to include the primitive variables, pressure and velocity, as outputs. This 

project validated these modules ensuring results converged to the Incompressible results when 

compressibility effects were negligible.   

In section 4.6 the Time Step restriction for the Incompressible and Compressible Flow 

solver was compared. The Incompressible Flow solver presented a much less restrictive time-

step limitation. This limitation was overcame for a moderate Reynolds number of 60,000 but 

could be critical when simulating higher Reynolds numbers or three-dimensional cases. As future 

work, I would suggest two developments. Firstly, numerous researches state that the FRGU 

advection operator presents a more favourable time step restriction. However, this is currently 

only implemented for segments, quadrilaterals and hexahedra. It would be of interest developing 

this scheme for further kind of elements. Secondly, in this thesis, for a moderate Reynolds 

number of 60,000 and two-dimensional simulations, the higher time step limitation of the 

Compressible solver was overcame. I see essential to compare the stability of both solver under 

higher Reynolds numbers and three-dimensional simulations and conclude whether the 

development of a semi-implicit scheme is required for the Compressible Flow solver. 

 During the development of the thesis numerous cases were tested. Among cases provided 

to users online, it was found a paper case not currently working for Nektar++ (MMC S11 case 

[8]). The git repository was analysed to look for a version that managed to run the case provided 

online. The difference in the versions being artificial viscosity was automatically on. The case 

only run when artificial viscosity was turned on. As future work, I would analyse the 

computational cost of having artificial viscosity automatically turned on. This would enhance 

stability and artificial viscosity would only be added in the case the sensor detects it is required. 

Moreover, the user is able to see if artificial viscosity is being added as it is included as an output 

parameter. Thus, the user will decide whether their results are accurate enough or if they require 

changes as mesh refinement. 
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Section 4.7 demonstrated the prescribed inlet conditions differ from the actual conditions 

appearing. This would make the practical use of the compressible flow solver challenging. The 

fact that the boundary condition is adjusting through the Riemann solver suggests the solid body 

might need to be further from the inlet and outlet boundaries. Consequently, a possible way to 

solve this would be extending the domain. However, this would result in the Compressible 

simulations to be more computationally expensive. There alternative ways to exactly enforce the 

boundary conditions. An example of it would be to implement the boundary conditions setting 

the conditions as USERDEFINETYPE PressureOutflow in Nektar++ .xml file. This 

implementation can be extrapolated for the inlet case. 

Finally, in section 4.8, the scalability of the Reynolds 60,000 and Mach 0.1 case was 

investigated. Showing the tendency of the time step to reduce with the number of CPUS-1, a 

significant reduction of the averaged time step up to 2500 CPUS and a maximum efficiency 

obtained for 1000 number of CPUs.  
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                                                                         Appendices 

Compressible Flow Solver Tutorial 

A2.1 Goals 

The aim of this tutorial is to introduce the user to the spectral/hp element framework Nektar++ 

and to describe the main features of its Compressible Flow Solver in a simple manner. After the 

completion of the tutorial the user will be familiar with: 

• The setup of the initial and boundary conditions, the parameters and the solver settings; 

• The expansions set up to mitigate aliasing effects; 

• The addition of artificial viscosity to deal with flow discontinuities and the consequential 

numerical oscillations; 

• Running a simulation with the Compressible Flow Solver; 

• The importance of running the simulation in parallel with multiple processors. 

• The post-processing of the data and the visualisation of the results in Paraview or VisIt; 

• The creation of Paraview animation to monitor the evolution of the simulation or visualize 

non-steady simulations; and  

• The use of FieldConvert modules to extract useful quantities from the field variables.  

A2.2 Problem Selection 

The problem was selected in terms of the size of the completed tutorial folder, its stability and 

the computational time required to complete the simulation. An additional fact when selecting 

the tutorial case was that the problem is part of the regression tests Nektar++ verifies when it is 

installed. The possibilities of the tutorial case failing due to new versions of the code minimises 

while there is no need to include a regression test for the tutorial case. Moreover, this case allows 

to visualize the flow evolution with few snapshots of the flow. This fact facilitated the creation 

of a video in Paraview. 

When selecting the tutorial case, the total memory of the tutorial folder was an important 

asset. The size of the folder containing the Compressible Solver Tutorial has been carefully 

considered to be below the average size of the rest of tutorial folders. As shown in table X, the 

average size is 10.16 MiB while the size of the tutorial created is 6.5 MiB. 

 

 



Tutorials Case study Folder Size 

Basics Advection-Diffusion 0.725 MiB 

Basics Helmholtz 0.395 MiB 

Fundamentals Integration 0.112 MiB 

Fundamentals Differentiation 0.127 MiB 

Incompressible Navier-Stokes Taylor-Green vortex 44.4 MiB 

Global Flow Stability Computation Channel flow  1.2 MiB 

Global Flow Stability Computation Cylinder flow 29.1 MiB 

Global Flow Stability Computation Backward-facing step 5.3 MiB 

Average size  10.16 MiB 

Table A.1.1: Total folder size of the different tutorial cases. 

The stability of the tutorial case was examined to provide a relatively large time step. As 

explained in the thesis the non-dimensional wall distance is inversely proportional to the 

Reynolds number. In order to allow for a coarse mesh, a low Reynolds number of 200 has been 

imposed. A coarse mesh and a low Mach number of 0.2 provides a CFL condition less restrictive 

and therefore a higher time step.  

The dimensionless time step of the compressible flow tutorial is 6.8e-4, which is larger 

than the average value. This was expected as the Compressible Flow Solver uses an explicit 

scheme, which restricts the stability of the solver.  

Tutorials Case study Dimensionless Time Step 

Basics Advection-Diffusion 1.10-3 

Incompressible Navier-Stokes Taylor-Green vortex 5.10-3 

Global Flow Stability Computation Channel flow  1.10-3 

Global Flow Stability Computation Cylinder flow 1.10-3 

Global Flow Stability Computation Cylinder flow Receptivity 8.10-4 

Global Flow Stability Computation Backward-facing step 2.10-3 

Average Time Step  1.8.10-3 

Table A.2.2: Comparison of the time step for the different tutorials. 

http://doc.nektar.info/tutorials/latest/basics/advection-diffusion/basics-advection-diffusion.html
http://doc.nektar.info/tutorials/latest/basics/helmholtz/basics-helmholtz.html
http://doc.nektar.info/tutorials/latest/fundamentals/integration/fundamentals-integration.html
http://doc.nektar.info/tutorials/latest/fundamentals/differentiation/fundamentals-differentiation.html
http://doc.nektar.info/tutorials/latest/incns/taylor-green-vortex/incns-taylor-green-vortex.html
http://doc.nektar.info/tutorials/latest/flow-stability/channel/flow-stability-channel.html
http://doc.nektar.info/tutorials/latest/flow-stability/cylinder/flow-stability-cylinder.html
http://doc.nektar.info/tutorials/latest/flow-stability/bfs/flow-stability-bfs.html
http://doc.nektar.info/tutorials/latest/basics/advection-diffusion/basics-advection-diffusion.html
http://doc.nektar.info/tutorials/latest/incns/taylor-green-vortex/incns-taylor-green-vortex.html
http://doc.nektar.info/tutorials/latest/flow-stability/channel/flow-stability-channel.html
http://doc.nektar.info/tutorials/latest/flow-stability/cylinder/flow-stability-cylinder.html
http://doc.nektar.info/tutorials/latest/flow-stability/cylinder/flow-stability-cylinder.html
http://doc.nektar.info/tutorials/latest/flow-stability/bfs/flow-stability-bfs.html


The tutorial consists of two simulations. The first shows how to set and run the Solver. 

Steps Processors Time 

1000 1 3 

1000 32 8 

Table A.2.3: Computational Time to perform the first part of the tutorial. 

The second simulation uses the same parameters but runs longer to create the .chk files 

required to create the video and visualize the field. This second case, shows the user importance 

of running the simulation in parallel.  

Final Physical Time Processors Time 

0.6 4 1h 

0.6 32 8min 

Table A.2.4: Computational Time to perform the second part of the tutorial. 
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Chapter 1
Introduction

The aim of this tutorial is to introduce the user to the spectral/hp element framework
Nektar+ + and to describe the main features of its Compressible Flow Solver in a simple
manner. If you have not already downloaded and installed Nektar + +, please do so by
visiting www.nektar.info, where you can also find the User-Guide with the instructions
to install the library.

This tutorial requires:

• Nektar + + CompressibleFlowSolver and pre- and post-processing tools,

• The visualisation tool Paraview or VisIt

1.1 Goals

After the completion of this tutorial, you will be familiar with:

• The setup of the initial and boundary conditions, the parameters and the solver
settings;

• The expansions set up to mitigate aliasing effects;

• The addition of artificial viscosity to deal with flow discontinuities and the conse-
quential numerical oscillations;

• Running a simulation with the CompressibleFlow solver;

• The post-processing of the data and the visualisation of the results in Paraview or
VisIt;

• The creation of Paraview animation to monitor the evolution of the simulation or
visualize non-steady simulations; and

• The use of FieldConvert modules to extract useful quantities from the field variables.

3

http://www.nektar.info
http://www.nektar.info/downloads/8
http://www.paraview.org
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
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Task 1.1
Prepare for the tutorial. Make sure that you have:

• Installed and tested Nektar++ v4.5.0 from a binary package, or compiled
it from source. By default binary packages will install all executables in
/usr/bin . If you compile from source they will be in the sub-directory
dist/bin of the build directory you created in the Nektar++ source
tree. We will refer to the directory containing the executables as $NEK
for the remainder of the tutorial.

• Downloaded the tutorial files: http://doc.nektar.info/tutorials/4.
5.0/cfs/CylinderSubsonic_NS/cfs-CylinderSubsonic_NS.tar.gz
Unpack it using unzip cfs-CylinderSubsonic_NS.tar.gz to pro-
duce a directory cfs-CylinderSubsonic_NS with subdirectories called
tutorial and complete We will refer to the tutorial directory as
$NEKTUTORIAL .

Task 1.2
Additionally, you should also install

• a visualization package capable of reading VTK files, such as ParaView
(which can be downloaded from here) or VisIt (downloaded from here).
Alternatively, you can generate Tecplot formatted .dat files for use with
Tecplot.

1.2 Background

The Compressible Flow Solver allows us to solve the unsteady compressible Euler and
Navier-Stokes equations for 1D/2D/3D problems using a discontinuous representation of
the variables. For a more detailed description of this solver, please refer to the User-Guide.

In this tutorial we focus on the 2D Compressible Navier-Stokes equations. The two-
dimensional second order partial differential equations can be written as:

∂q
∂t

+ ∂f
∂x

+ ∂g
∂y

= 0, (1.1)

where q is the vector of the conserved variables,

q =


ρ
ρu
ρv
E

 (1.2)

http://doc.nektar.info/tutorials/4.5.0/cfs/CylinderSubsonic_NS/cfs-CylinderSubsonic_NS.tar.gz
http://doc.nektar.info/tutorials/4.5.0/cfs/CylinderSubsonic_NS/cfs-CylinderSubsonic_NS.tar.gz
http://www.paraview.org/download/
https://wci.llnl.gov/simulation/computer-codes/visit/downloads
http://www.nektar.info/downloads/8


1.2 Background 5

where ρ is the density, u and v are the velocity components in x and y directions, p is
the pressure and E is the total energy. In this work we considered a perfect gas law for
which the pressure is related to the total energy by the following expression:

E = p

γ − 1 + 1
2ρ(u2 + v2), (1.3)

where γ is the ratio of specific heats.

The vector of the fluxes f = f(q,∇(q)) and g = g(q,∇(q)) can also be written as:

f = fi − fv, g = gi − gv, (1.4)

The inviscid fluxes fi and gi take the form:

fi =


ρu

p+ ρu2

ρuv
u(E + p)

 , gi =


ρv
ρuv

p+ ρv2

v(E + p)

 , (1.5)

while the viscous fluxes fv and gv take the following form:

fv =


0
τxx

τyx

uτxx + vτyx + kTx

 , gv =


0
τxy

τyy

uτxy + vτyy + kTy

 , (1.6)

where τxx, τxy, τyx and τyy, are the components of the stress tensor1

τxx = 2µ
(
ux − ux+vy

3

)
,

τyy = 2µ
(
vy − ux+vy

3

)
,

τxy = τyx = µ(vx + uy),

(1.7)

where µ is the dynamic viscosity calculated using the Sutherland’s law and k is the
thermal conductivity.

1Note that we use Stokes hypothesis λ = −2/3.
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1.3 Problem description

We aim to simulate the flow past a cylinder by solving the Compressible Navier Stokes
equations. For our study we use the following free-stream parameters: A Mach number
equal to M∞ = 0.2, a Reynolds number ReL=1 = 200 and Pr = 0.72, with the pressure
set to p∞ = 101325 Pa and the density equal to ρ = 1.225 Kg/m3.

The flow domain is a rectangle of sizes [-10 20] x [-10 10]. The mesh consists of 639
quadrilaterals in which we applied the following boundary conditions (BCs): Non− slip
isothermal wall on the cylinder surface, far − field at the bottom and top boundaries,
inflow at the left boundary and outflow at the right boundary.

For the Navier-Stokes equations a non− slip condition must me applied to the velocity
field at a solid wall, which corresponds to the cylinder for this problem. The cylinder
wall is defined as an isothermal wall with imposed temperature Twall = 300.15 K.

Figure 1.1 639 elements mesh.

Inflow, Outflow and Farfield BCs:

In the Compressible Flow Solver the boundary conditions are weakly implemented- (i.e
the BCs are applied to the fluxes). In the Euler equations, for farfield BCs, the flux is
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computed via a Riemann solver. The use of a Riemann solver for applying BCs implies
the usage of a ghost point where it is necessary to apply a consistent ghost state, which
is not always trivial. In evaluating the boundary, the Riemann solver takes automatically
into account the eigenvalues (characteristic lines) of the Euler equations and therefore the
problem is always well posed. This approach is equivalent to a characteristic approach
where the corresponding Riemann invariants are computed and applied as BCs, taking
into account if the boundary is an inflow or outflow. The method is also known as
no-reflective BCs as it damps the spurious reflections from the boundaries.

The characteristic approach presented for the Euler equations for farfield boundaries,
works also for the advective flux of the Navier-Stokes equations in regions where viscosity
effects can be neglected. However, in our outflow case shedding is present, so viscosity
effects become important. In this case, the characteristic treatment of the BCs generates
spurious oscillations polluting the overall solution and leading to numerical instabilities.
In order to avoid this, Nektar + + implements a method based on the so-called sponge
terms, modifying the RHS of the compressible NS equations as follows:

∂u
∂t

+ ∂f1
∂x1

+ ∂f2
∂x2

= σ(x̄)(uref − u), (1.8)

Where σ(x̄) is a damping coefficient defined in a region x̄ in proximity to the boundaries
and uref is a known reference solution. The length and the shape of the damping
coefficient depend on the problem being solved.

For further understanding of the boundary conditions implementation, please visit A
Guide to the Implementation of Boundary Conditions in Compact High-Order Methods
for Compressible Aerodynamics.

The initial condition is chosen to be that of a free flow field without the cylinder. If the
solution greatly differs from the initial condition waves develop giving stability problems.

Tip
Set the initial conditions close to the expected solution to accelerate convergence
and increment stability. Examples of setting more realistic initial conditions:

• In the case of a low Mach number, an incompressible flow solution can be
used as initial condition.

• Also, setting an inviscid solution as initial conditions may help. Note that
this can be done by selecting Euler equations instead of Navier-Stokes in
the SOLVERINFO tag.

We successively setup the parameters of the problem (section 2.3). We finally run the
solver (section 3) and post-process the data in order to visualise the results (section 4).

https://www.researchgate.net/publication/264044118_A_Guide_to_the_Implementation_of_Boundary_Conditions_in_Compact_High-Order_Methods_for_Compressible_Aerodynamics
https://www.researchgate.net/publication/264044118_A_Guide_to_the_Implementation_of_Boundary_Conditions_in_Compact_High-Order_Methods_for_Compressible_Aerodynamics
https://www.researchgate.net/publication/264044118_A_Guide_to_the_Implementation_of_Boundary_Conditions_in_Compact_High-Order_Methods_for_Compressible_Aerodynamics


Chapter 2
Pre-processing

To set up the problem we have three steps. The first is setting up a mesh as discussed
in section 2.1. The second one is setting the expansion bases as explained in section
2.2. We also need to configure the problem initial conditions, boundary conditions and
parameters which are discussed in 2.3.

2.1 Mesh generation

The first pre-processing step consists in generating the mesh in a Nektar+ + compatible
format. One option to do this is to use the open-source mesh-generator Gmesh to first
create the geometry. The mesh format provided by Gmesh is not consistent with the
Nektar + + solvers and, therefore, it needs to be converted. An example of how to do
this can be found in the Advection Solver Tutorial.

For two-dimensional simulations, the mesh definition contains 6 tags encapsulated within
the GEOMETRY tag. The first tag, VERTEX , contains the spatial coordinates of the vertices
of the various elements of the mesh. The second tag, EDGE contains the lines connecting
the vertices. The third tag, ELEMENT , defines the elements (note that in this case we
have only quadrilateral - e.g. <Q ID="85"> - elements). The fourth tag, CURVED , is used
to describe the control points for the curve. Note this tag is only necessary if curved
edges or faces are present in the mesh and may otherwise be obmitted. The fifth tag,
COMPOSITE , is constituted by the physical regions of the mesh called composite, where
the composites formed by elements represent the solution sub-domains - i.e. the mesh
sub-domains where we want to solve our set of equations (note that we will use these
composites to define expansion bases on each sub-domain in section 2.3) - while the
composites formed by edges are the boundaries of the domain where we need to apply
suitable boundary conditions (note that we will use these composites to specify the
boundary conditions in section 2.3). Finally, the sixth tag, DOMAIN , formally specifies the
overall solution domain as the union of the composites forming the solution subdomains
(note that the specification of different subdomain - i.e. composites - in this case is not
necessary since they are constituted by same element shapes). For additional details on

8

http://doc.nektar.info/tutorials/latest/basics/advection-diffusion/basics-advection-diffusion.pdf
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the GEOMETRY tag refer to the User-Guide.
1 <?xml version="1.0" encoding="utf−8" ?>
2 <NEKTAR>
3 <GEOMETRY DIM="2" SPACE="2">
4 <VERTEX>
5 <V ID="0">−1.00000000e+01 1.00000000e+01 0.00000000e+00 </V>
6 ...
7 <V ID="706">−4.93844170e−01 −7.82172325e−02 0.00000000e+00 </V>
8 </VERTEX>
9 <EDGE>

10 <E ID="0"> 0 1 </E>
11 ...
12 <E ID="1346"> 706 668 </E>
13 </EDGE>
14 <ELEMENT>
15 <Q ID="0"> 0 1 2 3 </Q>
16 ...
17 <Q ID="639"> 1345 1346 1269 615 </Q>
18 </ELEMENT>
19 <CURVED>
20 <E ID="0" EDGEID="1344" NUMPOINTS="4" TYPE="PolyEvenlySpaced"> ...
21 ...
22 <E ID="1346" EDGEID="235" NUMPOINTS="4" TYPE="PolyEvenlySpaced"> ...
23 </CURVED>
24 <COMPOSITE>
25 <C ID="100"> E[1268,1271,...,1344,1346] </C>
26 <C ID="101"> E[3,6,...,1256,1266] </C>
27 ...
28 <C ID="0"> Q[0−639] </C>
29 </COMPOSITE>
30 <DOMAIN> C[0] </DOMAIN>
31 </GEOMETRY>
32 </NEKTAR>

Note
In this case the mesh has been defined under the GEOMETRY tag with the
EXPANSIONS definition and the CONDITIONS section in the same .xml file. How-
ever, the mesh can be a separate input .xml format containing only the geometry
definition. Also, note that this mesh is in uncompressed format. In order to
reduce the size of a large mesh compressed format should be used.

2.2 Expansion bases

We need to specify the expansion bases we want to use in each of the composites or
sub-domains ( COMPOSITE=".." ) introduced in section 2.1:

1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" NUMMODES="3" FIELDS="rho,rhou,rhov,E"
3 TYPE="MODIFIED" />
4 </EXPANSIONS>

http://www.nektar.info/downloads/8
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For this case there is only one composite, COMPOSITE="C[0]" , where NUMMODES is the
number of coefficients we want to use for the basis functions (that is commonly equal to
P+1 where P is the polynomial order of the basis functions), TYPE allows selecting the
basis functions, FIELDS is the solution variable of our problem and COMPOSITE are the
mesh regions. For additional details on the EXPANSIONS tag refer to the User-Guide.

Tip
One source of instability is aliasing effects which arise from the nonlinearity
of the underlying problem. Dealiasing techniques based on the concept of
consistent integration can be applied in order to improve the robustness of
the solver. For further information about dealisaing techniques, please check
Dealiasing techniques for high-order spectral element methods on regular and
irregular grids.

An example of dealiasing technique on for quadrilateral elements:
1 <EXPANSIONS>
2 <E COMPOSITE="C[0]" BASISTYPE="GLL_Lagrange,GLL_Lagrange"
3 NUMMODES="5,5" POINTSTYPE="GaussLobattoLegendre,GaussLobattoLegendre"
4 NUMPOINTS="10,10" FIELDS="rho,rhou,rhov,E" />
5 </EXPANSIONS>

2.3 Configuring problem definitions

We will now proceed to set up the various problem parameters, the solver settings, initial
and boundary conditions.

Parameters

The case will be run at Mach number equal to M∞ = 0.2, Reynolds number ReL=1 = 200
and Pr = 0.72, with the pressure set to p∞ = 101325 Pa and the density equal
to ρ = 1.225 Kg/m3. The cylinder is defined as an isothermal wall with imposed
temperature Twall = 300.15 K.

Within PARAMETERS tag, we can can also define the final physical time of the simulation,
FinTime , the number of steps NumSteps , the step-interval when an output file is written
IO_CheckSteps and the step-interval when information about the simulation is printed
to the screen IO_InfoSteps .

Task 2.1
In the .xml file under the tag PARAMETERS , define all the flow parameters as
described above. These are declared asMach, Re, Pr, pinf , rhoinf and Twall.
Define the number of steps NumSteps as the ratio of the FinalT ime to the
time-step TimeStep.

http://www.nektar.info/downloads/8
http://www.sciencedirect.com/science/article/pii/S0021999115004301
http://www.sciencedirect.com/science/article/pii/S0021999115004301
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Warning
Do not define both Prandtl number and the thermal conductivity parameters.
They are correlated and defining both will prevent the simulation to start.

1 <PARAMETERS>
2 <P> TimeStep = 0.00001 </P>
3 <P> FinTime = 0.01 </P>
4 <P> NumSteps = FinTime/TimeStep </P>
5 <P> IO_CheckSteps = 100 </P>
6 <P> IO_InfoSteps = 100 </P>
7 <P> GasConstant = 287.058 </P>
8 <P> Gamma = 1.4 </P>
9 <P> pInf = 101325 </P>

10 <P> rhoInf = 1.225 </P>
11 <P> Mach = 0.2 </P>
12 <P> cInf = sqrt(Gamma ∗ pInf / rhoInf) </P>
13 <P> uInf = Mach∗cInf </P>
14 <P> vInf = 0.0 </P>
15 <P> Twall = 300.15 </P>
16 <P> Re = 200 </P>
17 <P> L = 1 </P>
18 <P> mu = rhoInf ∗ L ∗ uInf / Re </P>
19 <P> Pr = 0.72 </P>
20 </PARAMETERS>

Solver Settings

We now declare how the flow will be solved. We want to include the effects of fluid
viscosity and heat conduction and consequently the equation type we are going to use is
the Navier-Stokes equations.

Note
In Nektar + + the spatial discretization of the compressible Navier-Stokes
equations is projected in the polynomial space via discontinuous projection.
Specifically we make use of either of the discontinuous Galerkin (DG) method or
the Flux-Reconstruction (FR) approach. Consequently, set the Projection to
DisContinuous , as Continuous Projection is not supported in the Compressible
Flow Solver.

We must specify the advection type which will be the classical DG in weak form. Note
Nektar + + also presents the FRDG scheme, which recovers the DG scheme with exact
mass matrix, the FRHU scheme, which recovers the DG scheme with lumped mass
matrix and the FRSD scheme, which recovers a spectral difference scheme. We must also
define the diffusion operator we want to use, which will be local Discontinuous Galerkin
and the time integration method which will be the Classical Runge Kutta of order 4.
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Tip
When selecting the Advection Type scheme, bear in mind that:

• The error associated with the FRDG and DGSEM −EMM scheme is the
lowest. It corresponds to the most accurate scheme but it also presents
the most severe restrictions in terms of time-step.

• The FRHU and FRSD are slightly less accurate but have more favourable
time-step restrictions.

• For futher understanding, please visit Connections between the discontin-
uous Galerkin method and high-order flux reconstruction schemes and On
the Connections Between Discontinuous Galerkin and Flux Reconstruction
Schemes: Extension to Curvilinear Meshes..

Additionally, we need to define the Upwind Type (i.e. Riemann solver) we want to
use for the advection operator. For this problem we will use HLLC (Harten, Lax, van
Leer+Contact) Riemann solver. Also, we will use the constant viscosity type.

Note
A Riemann problem is solved at each interface of the computational domain
for the advection term. Nektar + + provides ten different Riemann solvers,
one exact and nine approximated. The exact one solves the problem using
a Newton iterative method. The high accuracy of this method may imply a
high computational cost. The approximated Riemann solvers do not take into
account the full Riemann problem, these simplifications of the exact solver
provide lower computational cost but lower accuracy.

Task 2.2
In the .xml file under the tag SOLVERINFO , define all the solver parameters as
described above. These are declared as EQType, Projection, AdvectionType,
DiffusionType, TimeIntegrationMethod, UpwindType, ViscosityType.

1 <SOLVERINFO>
2 <I PROPERTY="EQType" VALUE="NavierStokesCFE" />
3 <I PROPERTY="Projection" VALUE="DisContinuous" />
4 <I PROPERTY="AdvectionType" VALUE="WeakDG" />
5 <I PROPERTY="DiffusionType" VALUE="LDGNS" />
6 <I PROPERTY="TimeIntegrationMethod" VALUE="ClassicalRungeKutta4"/>
7 <I PROPERTY="UpwindType" VALUE="HLLC" />
8 <I PROPERTY="ProblemType" VALUE="General" />
9 <I PROPERTY="ViscosityType" VALUE="Constant" />

10 </SOLVERINFO>

http://onlinelibrary.wiley.com/doi/10.1002/fld.3915/pdf
http://onlinelibrary.wiley.com/doi/10.1002/fld.3915/pdf
https://www.researchgate.net/profile/Spencer_Sherwin/publication/283563496_On_the_Connections_Between_Discontinuous_Galerkin_and_Flux_Reconstruction_Schemes_Extension_to_Curvilinear_Meshes/links/5641c57508aec448fa61d509.pdf?origin=publication_list
https://www.researchgate.net/profile/Spencer_Sherwin/publication/283563496_On_the_Connections_Between_Discontinuous_Galerkin_and_Flux_Reconstruction_Schemes_Extension_to_Curvilinear_Meshes/links/5641c57508aec448fa61d509.pdf?origin=publication_list
https://www.researchgate.net/profile/Spencer_Sherwin/publication/283563496_On_the_Connections_Between_Discontinuous_Galerkin_and_Flux_Reconstruction_Schemes_Extension_to_Curvilinear_Meshes/links/5641c57508aec448fa61d509.pdf?origin=publication_list
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Variables

In the VARIABLES tag we set the solution variable. For the 2D case we have:
1 <VARIABLES>
2 <V ID="0"> rho </V>
3 <V ID="1"> rhou </V>
4 <V ID="2"> rhov </V>
5 <V ID="3"> E </V>
6 </VARIABLES>

Note again the weak enforcement of the boundary conditions. The BCs are applied to
the fluxes rather than to the non conservative variables of the problem. For further
understanding, please check A guide to the Implementation of the Boundary Conditions.

Boundary Conditions

The BOUNDARYREGIONS tag specifies the regions where to apply the boundary conditions.
1 <BOUNDARYREGIONS>
2 <B ID="0"> C[100] </B>
3 <B ID="1"> C[101] </B>
4 <B ID="2"> C[102] </B>
5 <B ID="3"> C[103] </B>
6 </BOUNDARYREGIONS>

The next tag is BOUNDARYCONDITIONS by which the boundary conditions are actually
specified for each boundary ID specified in the BOUNDARYREGIONS tag. The boundary
conditions have been set as explained in section 1.3

1 <!−− Wall −−>
2 <REGION REF="0">
3 <D VAR="rho" USERDEFINEDTYPE="WallViscous" VALUE="0" />
4 <D VAR="rhou" USERDEFINEDTYPE="WallViscous" VALUE="0" />
5 <D VAR="rhov" USERDEFINEDTYPE="WallViscous" VALUE="0" />
6 <D VAR="E" USERDEFINEDTYPE="WallViscous" VALUE="0" />
7 </REGION>
8 <!−− Farfield −−>
9 <REGION REF="1">

10 <D VAR="rho" VALUE="rhoInf" />
11 <D VAR="rhou" VALUE="rhoInf∗uInf" />
12 <D VAR="rhov" VALUE="rhoInf∗vInf" />
13 <D VAR="E" VALUE="pInf/(Gamma−1)+0.5∗rhoInf∗(uInf∗uInf+vInf∗vInf)" />
14 </REGION>
15 <!−− Inflow −−>
16 <REGION REF="2">
17 <D VAR="rho" VALUE="rhoInf" />
18 <D VAR="rhou" VALUE="rhoInf∗uInf" />
19 <D VAR="rhov" VALUE="rhoInf∗vInf" />
20 <D VAR="E" VALUE="pInf/(Gamma−1)+0.5∗rhoInf∗(uInf∗uInf+vInf∗vInf)" />
21 </REGION>
22
23
24

https://arc.aiaa.org/doi/abs/10.2514/6.2014-2923


14 Chapter 2 Pre-processing

25 <!−− Outflow −−>
26 <REGION REF="3">
27 <D VAR="rho" VALUE="rhoInf" />
28 <D VAR="rhou" VALUE="rhoInf∗uInf" />
29 <D VAR="rhov" VALUE="rhoInf∗vInf" />
30 <D VAR="E" VALUE="pInf/(Gamma−1)+0.5∗rhoInf∗(uInf∗uInf+vInf∗vInf)" />
31 </REGION>

Note
As explained in section 2.3 Continuous Projection is not supported in the
Compressible Flow Solver. Therefore, boundary conditions are specified through
Dirichlet BCs and Neumann BCs are not supported.

The initial conditions have been set as explained in section 1.3.
1 <FUNCTION NAME="InitialConditions">
2 <E VAR="rho" VALUE="rhoInf"/>
3 <E VAR="rhou" VALUE="rhoInf∗uInf" />
4 <E VAR="rhov" VALUE="rhoInf∗vInf" />
5 <E VAR="E" VALUE="pInf/(Gamma−1)+0.5∗rhoInf∗(uInf∗uInf+vInf∗vInf)"/>
6 </FUNCTION>

2.4 Artificial Viscosity

In order to stabilise the flow in the presence of flow discontinuities we utilise a shock
capturing technique which makes use of artificial viscosity to damp oscillations in the
solution, in conjunction with a discontinuity sensor to decide where the addition of
artificial viscosity is needed.

Tip
In order to turn the NonSmooth artificial viscosity on:

• Include ShockCaptureType option in SOLVERINFO tag and set it to
NonSmooth .

• Set the parameters Skappa , Kappa and mu0 in the PARAMETERS tag.
mu0 is the maximum value for the viscosity, Kappa is half of the width of
the transition interval and SKappa is value of the centre of the interval.
The viscosity varies from 0 to the maximum values as the sensor goes
from Skappa-Kappa to SKappa+Kappa.

• The default values are: Skappa =-1.3; kappa =0.2; mu0 =1.0.

• For futher details, please read chapter 3 of Mesh adaptation strategies for
compressible flows using a high-order spectral/hp element discretisation

https://spiral.imperial.ac.uk/handle/10044/1/43340
https://spiral.imperial.ac.uk/handle/10044/1/43340
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Running the solver

The CompressibleFlowSolver can be run to solve the Cylinder Subsonic problem.

Task 3.1
Run the solver by typing the following command on the command line:
$NEK/CompressibleFlowSolver CylinderSubsonic_NS.xml

Tip
To reduce the solution time on computers with multiple processors, MPI can
be used to run the simulation in parallel. Note that, for binaries compiled from
source, the Cmake option NEKTAR_USE_MPI must have been set ON . To run in
parallel, prefix the command in the previous task with mpirun -np X, replacing
X by the number of parallel processes to use. For example, to use 32 processes:
mpirun -np 32 $NEK/CompressibleFlowSolver CylinderSubsonic_NS.xml

The simulation has now produced 10 .chk binary files and a final .fld binary file. These
binary files contain the result of the simulation every 100 time-steps. This output interval
has been chosen through the parameter IO_CheckSteps in PARAMETERS tag. Also, it is
possible to note that every 100 time-steps the solver outputs the physical time of the
simulation and the CPU time required for doing 100 time-steps. The interval of 100
time-steps is decided through the parameter IO_InfoSteps .

Tip
Stability plays a crucial role in the Compressible Flow solver. To ensure the
solution is not polluted leading to numerical instabilities, for long simulations
the .chk files can be checked before the simulation ends.

15



Chapter 4
Simulation Results

Now that the simulation has been completed, we need to post-process the file in order to
visualise the results. In order to do so, we can use the built-in post-processing routines
within Nektar + +. In particular we can use the following command:

Task 4.1
Convert the .xml and .chk files into a .vtu format by calling
$NEK/FieldConvert CylinderSubsonic_NS.xml CylinderSubsonic_NS.fld
CylinderSubsonic_NS.vtu.

Which generates a .vtu file that is a readable format for the open-source package
Paraview. We can now open the .vtu file just generated and visualise it with Paraview.
If we want to monitor the evolution of the simulation we can make an animation in
Paraview by converting successive .chk files into .vtu

Task 4.2
Set the FinTime to 0.6 and run the simulation. In order to do that, define
the number of steps NumSteps as the ratio of the FinalT ime to the time-step
TimeStep and set the FinalT ime. Remember to use MPI in order to reduce
the simulation time.

To create the animation we need to convert the .xml files into .vtu format. To avoid
typing the same command several times, create a routine to create the different .vtu files.
Once all the .vtu files are created (they are found in the completed folder), open them in
paraview as a group (i.e File/Open and select all of them without expanding the tab).

If the final time is set to 0.6 and the .chk files are obtained every 400 steps. The animation
created with the last 20 files should look like the CylinderSubsonic_NS.ogv video included
in the completed folder.

16
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Convert the .xml and .fld files into a .vtu format as shown in Task 4.1.

Figure 4.1 Instantaneous Velocity Flow Field

Calculate Vorticity

To perform the vorticity calculation and obtain an output data containing the vorticity
solution, the user can run:

Task 4.3
Create a .fld file with the vorticity with the command:
$NEK/FieldConvert -m vorticity CylinderSubsonic_NS.xml
CylinderSubsonic_NS.fld CylinderSubsonic_NS_vort.fld

Figure 4.2 Instantaneous Vorticity Flow Field
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Extract Wall Shear Stress

To obtain the wall shear stress vector and magnitude, the user can run:

FieldConvert -m wss:bnd=0:addnormals=0 CylinderSubsonic_NS.xml
CylinderSubsonic_NS.fld CylinderSubsonic_NS_wss.fld

The option bnd specifies which boundary region to extract. In this case the boundary
region ID of the cylinder is 0. If the addnormals is turned on, Nektar + + additionally
outputs the normal vector of the extracted boundary region.

In order to process the ouput file(s) you will need an .xml file of the same region. In
order to do that we can use the NekMesh module extract:

NekMesh -m extract:surf=100 CylinderSubsonic_NS.xml bl.xml

Note, for NekMesh the surface ID we want to extract corresponds to the composite
number of the cylinder surface -i.e 100.

To process the surface file one can use:

FieldConvert bl.xml CylinderSubsonic_NS_wss.fld
CylinderSubsonic_NS_wss.vtu

This command will generate a .dat file with the flow field information in the cylinder
wall. It will produce the information of the density rho, the fluxes rhou, rhov and E,
the pressure p, the sound velocity a, the Mach number Mach, the sensor values Sensor,
the shear values Shearx, Sheary and Shearmag and the norms normx and normy for
the different x and y coordinated along the cylinder. These files can be obtained from
the completed folder.

This completes the tutorial.
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