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We study the convective patterns that arise in a nearly semicylindrical cavity fed
in with hot fluid at the upper boundary, bounded by a cold, porous semicircular
boundary at the bottom, and infinitely extended in the third direction. While
this configuration is relevant to continuous casting processes that are significantly
more complex, we focus on the flow patterns associated with the particular
form of mixed convection that arises in it. Linear stability analysis (LSA) and
direct numerical simulations (DNS) are conducted, using the spectral-element
method to identify observable states. The nature of the bifurcations is determined
through Stuart-Landau analysis for completeness. The base flow consists of two
counter-rotating rolls driven by the baroclinic imbalance due to the curved isothermal
boundary. These are, however, suppressed by the through-flow, which is found
to have a stabilising influence as soon as the Reynolds number Re based on
the through-flow exceeds 25. For a sufficiently high Rayleigh number, this base
flow is linearly unstable to three different modes, depending on Re. For Re < 75,
the rolls destabilise through a supercritical bifurcation into a travelling wave. For
100 < Re < 110, a subcritical bifurcation leads to a standing oscillatory mode, whereas
for Re > 150, the unstable mode is non-oscillatory and grows out of a supercritical
bifurcation. The DNS confirm that in all cases the dominant mode returned by the
LSA precisely matches the topology and evolution of the flow patterns that arise out
of the fully nonlinear dynamics.

Key words: baroclinic flows, buoyancy-driven instability

1. Introduction

This work is concerned with the convective patterns arising in cavities with curved
isothermal boundaries and permeated by a through-flow. This configuration is typical
of continuous casting processes of metallic alloys. In this type of process, solidified
metal is pulled from the bottom of a pool of melted metal continuously fed from
above. The pulling speed is adjusted to match that of the solidification front which,
therefore, behaves as a steady but porous boundary for the fluid. Problems of this
class, and solidification problems in general, are governed by a complex interplay
of coupled phenomena, among which are thermal and chemical convection-diffusion
involving multiple species, hydrodynamic instabilities arising in boundary layers
and shear regions, solidification and the solid-liquid phase interaction that ensues
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FIGURE 1. Flow configuration calculated at Re = 25 and Ra = 10*. On the left-hand
side, the streamlines are in black; on the right-hand side, the isobars are in red and
the isotherms in blue. While the convection is initiated by the baroclinic imbalance near
the corners, where isobars and isotherms intersect, the rolls result from the return flow
generated in the middle, where the jets initiated opposite corners meet.

both at the boundaries (in mushy layers) and the bulk (transport of solid particles).
A complete description of this process requires extensive modelling of how these
phenomena are coupled, usually at the expense of strong modelling assumptions (see
for example, Kuznetsov (1997), Sheng & Jonsson (2000), Thomas & Zhang (2001)).
A key mechanism among these involves the rather unusual type of mixed convection
coupling the buoyancy indirectly caused by the shape of the boundaries and the
through-flow. Instead of attempting a full description of the industrial process, we
focus on the physical process associated with this particular coupling.

The first physical ingredient in it is the source of buoyancy. Unlike configurations of
the Rayleigh—Bénard type, the stratification itself is not a direct source of instability,
as the hot — hence lighter — fluid is fed at the top surface of the pool, while
the cold fluid is located at the bottom near the solidification front. Instead, the
convection originates from the shape of the isothermal solidification front. Isotherms
near it intersect isobars that are mostly horizontal in the bulk but curved near
the boundaries (see figure 1). Consequently, the pressure forces cannot oppose the
fall of heavy fluid along the boundary and a fluid motion must exist, no matter
how small the temperature difference between the hot and the cold boundaries.
Barotropic buoyancy sources of this kind are mostly studied in the context of
oceans and atmospheres, where the misalignment of density and pressure gradients
stems from the pressure contribution of the centrifugal forces due to planetary
rotation (Hart 1979; Pierrehumbert & Swanson 1995). Nevertheless, the simplest
manifestation of baroclinic imbalance is obtained by tilting the plane configuration
of the Rayleigh—Bénard problem away from the horizontal position. In an infinite
geometry, a flow along the tilted direction is driven by the temperature gradient. At
low tilt angles, the base convective flow destabilises to transversal disturbances under
the form of non-oscillating rolls at low Prandtl number and travelling waves at high
Prandtl number (the Prandtl number Pr = v/« is the ratio of viscosity v to thermal
diffusivity o). At higher tilts, longitudinal rolls dominate (Hart 1971; Korpela 1974).
While the saturated state may involve nonlinear interaction between transverse and
longitudinal modes if their respective critical Rayleigh numbers are close to each
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other, the travelling wave is by contrast always subject to a secondary instability and
not observable (Fujimura & Kelly 1993).

The second ingredient is the through-flow fed in at the upper boundary of the
cavity and escaping at the lower boundary through solidification. Through-flows
are found in two types of mixed convection problems of some relevance to our
configuration: at the boundary of a heated cavity (Papanicolaou & Jaluria 1992) or
through a heated conduit (see Jaluria (1980) and Kelly (1994) for reviews), whether
a pipe (Shome & Jensen 1995), a duct (Nicolas, Luijkx & Platten 2000) or a
channel (Gage & Reid 1968). In all conduit configurations, the shear associated
with the through-flow acts as a source of instability. For example, in channels,
Tollmien—Schlichting waves are favoured in this way (Schmid & Henningson 2001)
and the mixed convection patterns result from a competition between buoyancy-driven
and hydrodynamically driven instabilities. Whether one or the other dominates depends
on the ratios of buoyancy and inertia to viscous forces, respectively measured by
the Rayleigh number Ra = BgATh?/(va) and the Reynolds number Re = Uyh/v
(B, AT, h, g, Uy are the fluid’s thermal expansion coefficient, the temperature
difference between boundaries, the domain diameter, gravitational acceleration and
the fluid inlet velocity). In the simplest configuration of the Rayleigh—Bénard—
Poiseuille problem, transversal rolls dominate at low Reynolds numbers while
Tollmien—Schlichting waves characteristic of the Poiseuille flow problem dominate
for Re > 140 (Fujimura & Kelly 1995). In rectangular cavities, by contrast, natural
convection sets in through an oscillatory mode if the hot wall is located on the side
(Briggs & Jones 1985). The first unstable mode remains oscillatory when mixed
convection is introduced with a through-flow along the top wall. It sets in through
a ‘rolling pad’ instability for a sufficiently high Richardson number, Gr/Re?, where
the Reynolds number is based on the through-flow and Gr = Ra/Pr is the Grashof
number. Hence, the through-flow tends to suppress convection (Papanicolaou &
Jaluria 1992). This configuration bears important similarities with the problem we are
considering, in that isotherms and isobars are not aligned and the thermal instability
is damped by a through-flow. In both configurations, the base temperature gradient
induces a stable stratification, so convection does not ensue from a Rayleigh—-Bénard
instability. Nevertheless, the shape of the boundaries differs considerably between
the two problems and the through-flow is only local in the work by Papanicolaou &
Jaluria (1992).

Indeed, a specifically interesting aspect of the cavity configuration is that, during
continuous casting, the accumulating solid phase at the solidification front is
continuously pulled downward, so the lower boundary remains at a constant position.
This feature of the process is modelled by means of a porous boundary condition
accounting for the mass flux from the liquid to the solid phase, as proposed by
Flood & Davidson (1994). As such, the through-flow lacks the shear responsible for
the hydrodynamic part of the instability in other mixed convection problems, such
as the Rayleigh—Bénard—Poiseuille problem, and mainly acts to suppress the base
convective flow. The second specificity is that, unlike most other problems of mixed
convection, the source of buoyancy is purely baroclinic and not due to an unstable
stratification (see figure 1 for the flow configuration). While a background shear can
inhibit baroclinic instabilities in open flows (James 1987), the instabilities arising from
the interaction of the uniform flow with baroclinic buoyancy in the confined fluid
domain we are considering are not known. Because of these specificities, the problem
of a heated flow through a cavity may possess a very different phenomenology to
that encountered in the problems involving mixed convection discussed above, even
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though they share some of their ingredients. As such, the convective patterns, whether
they are steady or not, and the nature of the bifurcation associated with their onset
are not known, despite their central role in solidification problems.

The purpose of this work is precisely to identify both the mechanisms governing
the stability of a generic flow supporting this phenomenology and the actual flow that
ensues. The minimal geometry with all the necessary ingredients for this purpose
was first proposed by Flood & Davidson (1994). It consists of a pool with a
hot isothermal rigid free-slip upper boundary supporting a uniform inflow and a
cold isothermal semicircular solid wall representing the solidification front at the
bottom. The stable stratification avoids the complication of mechanisms associated
with unstably stratified flows, even though these could occur in some solidification
problems depending on the nature of the alloys being solidified (Kuznetsov 1997).
For simplicity, the domain shall be assumed infinitely extended in the third direction.
We tackle the problem numerically, with both linear stability analysis (LSA) and
direct numerical simulations (DNS) based on a combination of the spectral-element
method and Fourier-spectral discretisation in the invariant direction. This choice of
methodology offers the necessary flexibility to deal with the non-trivial shape of
the boundary while retaining the numerical precision of spectral methods (Canuto
et al. 1988; Karniadakis & Sherwin 1999). We shall seek answers to the following
questions:

(i) What is the nature of the base flow?

(i1) In which conditions is this flow stable?
(iii) What is the topology and nature (oscillatory or not) of the unstable mode?
(iv) What is the nature of the bifurcation at the onset of the instability?

After the mathematical definition of the problem and governing equations in §2,
we shall provide the details of the numerical methods we use and of their validation
(§3). We shall then determine the base flow by means of two-dimensional DNS
in the vertical plane (§4) and assess its stability to infinitesimal three-dimensional
perturbations through LSA (§5). Three-dimensional DNS of the flow near the onset
of stability shall provide a validation for the LSA approach and indicate whether the
saturated state can be inferred from it. The relevance of the LSA approach shall be
further validated by seeking the nature of the bifurcation by means of a Stuart-Landau
analysis (Sheard, Thompson & Hourigan 2004) in §6. Finally, concluding remarks
are presented in §7.

2. Problem formulation
2.1. Configuration and flow equations

The problem is mostly modelled as proposed by Flood & Davidson (1994). We
consider a stably stratified flow in a cavity with an upper free surface where the hot
fluid is fed in and with a cold porous lower boundary (representing a solidification
front), as sketched in figure 2. The cavity is made of a semicircular lower boundary
representing the actual front, two adiabatic sidewalls and is considered infinitely
extended in the third direction (e,). Since we focus on the convective mechanisms,
detailed solidification mechanisms are not modelled. As such, the fluid in the
cavity is assumed to remain in a single liquid phase. The fluid is assumed to be
Newtonian, incompressible, of density p, at a reference temperature T, viscosity v,
thermal diffusivity «, and thermal expansion coefficient 8. Further considering that
temperature gradients remain moderate, the fluid’s motion is described under the
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FIGURE 2. The semicylindrical geometry with the upper free surface, the sidewalls, and
the solidification front. The fluid enters at the top and exits through the solidification front
with vertical velocity uy.

Boussinesq approximation (Chandrasekhar 1968) and the dynamical equations take
the non-dimensional form

9
(Tl: + (- V)u+ Vp=RaPrTe, + Prv’u, 2.1)
aT 2
o F@-VT=VT, 2.2)
V N 0’ (23)

where u = (u, v, w) is the velocity vector, ¢ the time, p the modified pressure
including the buoyancy term accounting for the reference temperature (Chandrasekhar
1968; Tritton 1988) and g = —ge, is the gravitational acceleration. These equations
are obtained by normalising lengths by the radius of the semicylindrical pool R,
velocities by a/R, time by R*/«, pressure by po(a/R)? and temperature by AT. Here,
AT is the temperature difference between the hot upper free surface and the cold
solidification front at the lower boundary. Note that the term involving the reference
temperature is absorbed in the pressure gradient through the modified definition of
pressure. The Prandtl number, Pr = v/«, is fixed to 0.02, a value typical of liquid
metals in continuous casting processes. The Rayleigh number Ra is defined as

_ BeATR?
 va

(2.4)

The upper boundary at y =1 is modelled as a rigid free surface (standard free-slip
boundary condition), where incoming fluid at an imposed temperature AT is poured
with a homogeneous spatial distribution. This is expressed with three boundary
conditions:

d
a—yu xe,=0, wu-e,=RePr, T(y=1)=1, (2.5a—c)
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where the mass flux Reynolds number Re is based on the dimensional feeding velocity
up. In a continuous casting process, this velocity would correspond to the casting
speed (Flood & Davidson 1994):

_ M()R

Re (2.6)

v
Thus, Re = 0 corresponds to zero net mass flux, i.e. no fluid crosses through the
boundaries of the semicylindrical pool, while Re # 0 corresponds to non-zero net mass
flux, i.e. the fluid enters and leaves the domain uniformly through the upper and lower
surfaces as in Flood & Davidson (1994). The incoming mass flux is exactly cancelled
by the flux of fluid being solidified and pulled at the solid lower boundary S, where
solidification imposes the reference temperature:

usxe,=0, us-e,=RePr, T(y=0)=0. (2. 7a—c)

The kinematic condition expresses that the fluid flows vertically downwards through
the otherwise no-slip but porous lower boundary. Note that the slight differences
between the definitions of the Rayleigh and Reynolds numbers given in the
introduction and the ones given in this section reflect the difference between the
geometries discussed there and the specific one we are considering in this paper.
To ensure consistent boundary conditions for the temperature field at the corners
of the domain, short sidewalls of 0.05R in height separate the upper and the lower
boundaries. Impermeable, no-slip boundary conditions for the velocity field and
an insulating boundary condition for the temperature field are imposed at these
sidewalls. In a real casting process, these walls represent the mould. Finally, the
infinite extension of the domain in the third direction e, is represented by periodic
boundary conditions for the velocity and temperature fields.

2.2. Linear stability analysis

The system admits steady base solutions that are invariant along e,, similar to those
found by Flood & Davidson (1994) (see the detailed topology of these solutions
in §4). These may, however, be unstable to three-dimensional perturbations. Hence,
we shall detect the corresponding bifurcation by analysing the stability of the
base two-dimensional flow to infinitesimal three-dimensional perturbations. As such,
velocity, pressure and temperature fields are decomposed into the two-dimensional
base flow and an infinitesimal three-dimensional perturbation, as

ux,y,z,)=Ux,y) +u'(x,y,z,1), (2.8)
Tx,y,z,0=T0xy) +T(xy 21, (2.9
px,y, z, ) =Px,y) +p'(x, y, 2, 0). (2.10)

Substituting (2.8)—(2.10) into (2.1)—(2.3) and retaining first-order terms only yields the
linearised equations governing the evolution of infinitesimal perturbations:

a ’
a"t +@ - V)U+ (U-V)u' +Vp =RaPrT'e, + Prv’u/, (2.11)
T _
o +@W -V)T+U-VT = V2T, (2.12)
V.u=0. (2.13)
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The base flow (U, T, P) satisfies the same boundary conditions as the main variables
(u, T, p) so that the perturbation variables satisfy the homogeneous counterpart of the
boundary conditions associated with the base flow. Since the base flow is invariant
along e, the general perturbation may be decomposed into normal Fourier modes as

o]

gy z0=>Y 4y e, (2.14)

k=—00

where ¢' = (w’, T', p’) contains all perturbation fields and k is the wavenumber along
the homogeneous direction e,. Further, the absence of the third component of the
velocity field in the base flow allows a single phase of the complex Fourier mode to
be considered, following Barkley & Henderson (1996) and others (Barkley, Gomes &
Henderson 2002; Sapardi et al. 2017). The two-dimensionality of the base allows us
to reduce the three-dimensional perturbation field to a family of two-dimensional fields
parametrised by wavenumber k£ and computed on the same two-dimensional domain
as the base flow.

The LSA equations shall be solved by means of a time-stepper method: defining a
linear time evolution operator A(t) for the time integration of (2.11)—(2.13) over time
interval 7 as

at+ 1) = A0, 2.15)

we solve the eigenvalue problem for operator A(7) as

A0 = i, (2.16)

Here ¢; denotes the eigenvector of A(7) corresponding to the complex eigenvalue ;.
The growth rate o and frequency w of an eigenmode are related to w through

u=expl(o +iw)t], (2.17)
where the subscript is ignored for brevity. Further, equation (2.17) yields

I 6
. (2.18a,b)
T T

with = |ule?. An instability occurs if o > 0, i.e. |u| > 1, while for |u| < 1 the
corresponding eigenmode is stable. The growing eigenmode may be either oscillatory
(w # 0) or non-oscillatory (w =0). The smallest Rayleigh number for which at least
one wavenumber k achieves || =1 is the critical Rayleigh number for the onset of
instability at a particular value of Re, which we shall denote as Ra..

3. Computational methods
3.1. Numerical set-up

We perform three different types of numerical computations. First, steady two-
dimensional solutions obtained using DNS of (2.1)—(2.3) with associated boundary
conditions. Two-dimensionality is enforced by setting 9/0z=0 and w=0. Second, the
LSA of three-dimensional perturbations on the two-dimensional base flow is carried
out, by solving the eigenvalue problem set out in §2.2. This yields the bifurcation
points and the structure of the first unstable mode, in the sense of growing Ra. Third,
three-dimensional DNS are performed in weakly sub- and supercritical regimes for
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FIGURE 3. Details of the mesh with polynomial order N = 1. The mesh contains 184
quadrilateral elements.

two purposes: (1) to assess the relevance of the LSA results and (2) to find the
nature of the bifurcation. The latter is obtained by computing the parameters of the
Stuart-Landau model from the three-dimensional DNS data, as proposed by Sheard
et al. (2004).

Both the two-dimensional base flow and the evolution of the three-dimensional
flow near criticality are obtained by solving (2.1)-(2.3) using spectral-element code
Nektar++ (Cantwell et al. 2015). In the spectral-element approach, the computational
domain is partitioned into a mesh of many small subdomains called elements, and
the variables are projected within a polynomial basis within each element, as in
the finite element method. The specificity of the spectral-element method is that
‘mesh’ refinement is mainly achieved by increasing the order of the polynomial basis
(p-refinement) and that polynomials are represented at Gauss—Lobatto points which
ensure spectral convergence under p-refinement. Both two- and three-dimensional
DNS are performed on the same spectral-element mesh in the x-y plane. For
the three-dimensional simulations, discretisation in the e, direction relies on a
Fourier-based spectral method. The computational domain extends by 2m along e,, or
equivalently, the lowest Fourier mode in the spectral discretisation is always k = 1.
Figure 3 shows the detail of the two-dimensional x-y mesh with polynomial order
N =1, generated using the GMSH package (Geuzaine & Remacle 2009). The mesh is
composed of 184 quadrilateral elements and is structured in the rectangular part of the
domain close to the upper free surface up to thickness 0.05, and unstructured in the
remaining part of the domain. A vertical line along the y-axis is imposed to ensure
the symmetry of the mesh with respect to that line. At the boundaries, elements are
more densely packed than in the bulk, with the ratio between the largest to smallest
element’s edge size of four. Time-stepping relies on a third-order implicit—explicit
(IMEX) method (Vos et al. 2011).

The LSA is conducted with open-source eigenvalue solver DOG (Direct Optimal
Growth, Blackburn & Sherwin (2004), Pitz, Marxen & Chew (2017)), based on a
time-stepper method with spectral-element discretisation. The linearised equations
(2.11)~(2.13) are integrated in time using a third-order backward differentiation
scheme (Karniadakis, Israeli & Orszag 1991), with the two-dimensional base flow
obtained from the DNS. The leading eigenvalues and eigenmodes are obtained using
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the iterative process from the method prescribed by Tuckerman & Barkley (2000)
and Barkley, Blackburn & Sherwin (2008).

For the two-dimensional DNS, the initial condition is set to u =0, p = 0, and
T = y. The three-dimensional DNS are initiated with the solution obtained for the
two-dimensional base flow replicated along e,, with added white noise of standard
deviation 0.001 (as well as 0.01 and 0.1 for Ra < Ra. when the bifurcation is
subcritical, i.e. Re =100 and Re = 110).

Cubic spline interpolation of the SCIPY package (Virtanen et al. 2019) is used
to estimate the Rayleigh number that first produces o (k) = 0 at different values of
k. This gives the curve for Rayleigh number versus k, whose minimum yields the
estimate of the critical Rayleigh number Ra. and the critical wavenumber k.. Again,
by cubic spline interpolation, we estimate the value of critical frequency w. for the
corresponding k.. The resulting uncertainty on Ra,, k. and w. remains within 0.01 %.

3.2. Code validation

We first validated the DNS code and the linear stability solver DOG for two-
dimensional Rayleigh—-Bénard convection in a box. At the top and bottom plates, a
no-slip boundary condition for the velocity field and a conducting boundary condition
for the temperature field are imposed. Periodic boundary conditions are applied at the
sidewalls for both the fields. DNS were validated by calculating the Nusselt number

AT T
o A + (wT)
AT ’
P
R
where () represents the volume average. Here, Nu measures the ratio of the total
(convective plus conductive) heat flux to the conductive heat flux. It was computed
for Pr=0.71 and Ra= 5000 in a two-dimensional box and the relative error between
the Nusselt number computed from our DNS and that of Clever & Busse (1974)
was 0.09 %. For the LSA, we recovered the known values of the critical Rayleigh
number (Ra. = 1707.7) and critical wavenumber (k. = 3.116) found, for instance, in
Chandrasekhar (1968), to within an uncertainty of 0.002 %. For both DNS and LSA, a
rectangular mesh of 100 structured quadrilateral elements with polynomial order N =9
was used.

Nu = (3.1

3.3. Convergence tests

Since the spectral-element discretisation is only used in the x-y plane, we performed
a convergence test on the base two-dimensional flows and the eigenvalue problem
based on the two-dimensional domain. This test was performed for each value of Re
we considered throughout this work, both on the DNS and on the leading eigenvalue
returned by the LSA at k for which o (k) is maximum. Table 1 shows an example for
the accuracy of the eigenvalue calculations as a function of the polynomial degree N
for Re =500, the highest value of Re considered in this work. The leading eigenvalue
for Ra=2 x 10° and k = 13 is real and linearly unstable. We increased N until the
eigenvalue converged to a precision of five significant figures, which is N = 14 for
this case. This way, the same level of precision was achieved for all results presented
in this work. The time step was kept constant for all three types of numerical
calculations so that the maximum local Courant number C,,, remained below unity
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N |tmaxl  Relative error (%)

9 1.0361 0.55668
10 1.0399 0.19196
11 1.0413 0.05759
12 1.0415 0.03839
13 1.0418 0.00960
14 1.0419 —
15 1.0419 —
16 1.0419 —

TABLE 1. Dependence of leading eigenvalues on the polynomial order N. Leading
eigenvalues computed on the mesh at Re = 500, Ra =2 x 10° and k = 13 are provided.
The relative error is to the case of the highest polynomial order (N = 16).

and the Courant-Friedrich-Levy condition was strictly satisfied everywhere in the
domain, at all time. For instance, at Re = 500, Ra =2 x 10° and N = 16, the time
step is 107, which yields a maximum Courant number of C,,,, = 0.05.

Furthermore, some supercritical cases (for example, Re = 200 and Ra = 10°) are
unstable to time-periodic, two-dimensional perturbations. In these cases, a DNS of
the base flow over the entire two-dimensional domain does not converge to the base
steady solution. Since the perturbation breaks a symmetry with respect to the x =0
plane, we found the steady state by performing a DNS on the x << 0 half of the
domain, implementing symmetry boundary conditions for the velocity (Neumann
boundary condition on u, Dirichlet boundary condition on v) and the temperature
(Neumann boundary condition) at x =0. The solution over the full domain was then
built by symmetry (Mao & Blackburn 2014). We checked that the relative error in
the magnitude of the most dominant mode for Re =200, Ra = 10°> and k =7 obtained
from LSA on base flows calculated on the full domain and the half-domain was less
than 0.01 %. Thus, the use of half-domain calculation for the base flow is justified
and also computationally cheaper.

For the three-dimensional DNS, the dependence on the number of Fourier modes N,
was tested by computing the total kinetic energy of the three-dimensional flow over
the entire domain. The relative error in the kinetic energy of the supercritical steady
state at Re =200 and Ra = 1.1 x 10° between computations at N; =32 and N; = 64
was 0.01 %. Similar results were obtained for other values of Re, and thus 32 Fourier
modes were employed for all cases. Note that the three-dimensional simulations are
performed only up to Re =200, as the simulations for higher values of Re become
prohibitively expensive. A summary of all cases investigated is provided in table 5.

4. Two-dimensional base flows
4.1. Dynamics of base flow with zero net mass flux (Re=0)

To perform a LSA, we first need to obtain the two-dimensional base flow. We first
focus on the behaviour of two-dimensional base flow with zero net mass flux. Figure 4
displays the density plots of the temperature field and the velocity vector field u
in the x-y plane for Re = 0 and Ra = 1. Despite a ‘stable’ stratification (i.e. the
light fluid is mostly on the top of the heavy one), we observe prominent convective
rolls. This motion is driven by the misalignment of the pressure gradient and the
temperature gradient, which generates a baroclinic imbalance. This effect is best seen
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FIGURE 4. Two-dimensional base flow at Re =0 and Ra=1. The pressure gradient (Vp)
and the temperature gradient (VT) are indicated by red and white arrows, respectively.
These gradients form an angle at the upper corners, which results in a baroclinic
imbalance. In models with explicit dependence of the density on the temperature, the
density gradient is related to the temperature gradient as Vp = —B~'VT in dimensional
variables. Note that in this example, the modified pressure is predominantly determined by
the buoyancy, as it includes the buoyancy term corresponding to the reference temperature.

by considering an equilibrium state and the small displacement of a fluid particle
along an isothermal line. In a Rayleigh—-Bénard configuration, isobars and isotherms
are aligned, so no change in either buoyancy or pressure forces on the fluid particle
occurs as a result of the displacement. If, on the other hand, isobars and isotherms
are not aligned, as in the present configuration (and if the isobars are reasonably
parallel), the displacement results in a variation of pressure forces in the direction
normal to the isobar. Since the displacement takes place along an isotherm, the excess
or deficit in pressure forces is not compensated by a variation in buoyancy forces
and a motion must take place for viscous forces to restore equilibrium. Near the
semicircular boundary of the domain, the temperature gradient is radial, whereas the
pressure gradient (dominated by buoyancy) is tilted. While these directions coincide
near the centre of the domain (around x = 0), the angle they form increases to a
maximum near the sidewalls. At these locations, the imbalance is maximum and drives
a strong downward jet along the circular boundary. The rolls form as a result of
the left and right jets meeting at where the flow returns. This form of baroclinic
imbalance drives a non-zero base flow, even at arbitrary low-temperature gradients.
It is noteworthy that this mechanism is a simpler form of the classical baroclinic
imbalance in models incorporating an explicit temperature dependence of the density.
In these models, the imbalance appears explicitly in the dimensional vorticity equation,
where the curl of the pressure term yields a vorticity source term proportional to the
baroclinic vector 1/p(T)?>V p(T) x Vp (Vallis 2006), and where the density gradient is
Vpo(T)=—-VT/B in dimensional variables. Again, in Rayleigh-Bénard configurations
the gradients of vorticity and pressure are aligned, so the baroclinic vector is zero. In
the semicircular cavity, by contrast, the baroclinic vector is maximum near the corner
and drives a jet along the wall in exactly the same way as in the model we are using.

Interestingly, if the curvature of the lower boundary was continuously decreased to
zero, the angle between the temperature and pressure gradient would progressively
decrease to zero, too. In the limit of a flat lower boundary, the Rayleigh-Bénard
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FIGURE 5. Two-dimensional base flow with zero net mass flux (Re=0) at (a) Ra=10%
(b) Ra=10°; (¢) Ra=10% and (d) Ra = 107. Colours represent the magnitude of the
velocity field. Panels (e and f) display Lissajous graphs in the (u, v) plane for Ra = 10°
and Ra =107 measured at (x,y) = (—0.5, 0.6), respectively exhibiting periodic and chaotic
states.

configuration would be recovered in a channel of height determined by the sidewalls,
even though these would be pushed to infinity. However, the stratification would be
stable and since the baroclinic imbalance (and also the baroclinic vector) would cancel
out in this limit, the base flow would be still and stable, with a linear temperature
gradient in the bulk.

We now gradually increase the Rayleigh number from Ra = 10* to Ra = 107 with
Re = 0. As expected, the velocity field strengthens at the wall with the increase in
Rayleigh number, since the intensity of the temperature gradient in the baroclinic
vector increases (see figure Sa—d). While the two-dimensional solution remains steady
for Ra=10* and Ra=10°, it becomes time-periodic for Ra = 10° and chaotic for Ra =
107. The periodic and chaotic nature of the solutions for Ra = 10% and Ra = 107 are
illustrated by the Lissajous graphs of the two components of velocities in figures 5(e)
and 5(f).
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FIGURE 6. Streamlines of the steady two-dimensional base flow and temperature field for
Ra=10* at (a) Re=0; (b) Re =25; (¢) Re=50; (d) Re=100; and (¢) Re =200.

4.2. Base solution with non-zero mass flux (Re > 0)

One of the key ingredients in the problem we consider is the through-flow. To
illustrate its effect on the base flow, we computed the two-dimensional base flows
for a range of Reynolds numbers from 0 to 200, at a fixed value of Ra of 10* (for
the purpose of seeking the critical Rayleigh number for the linear stability, the base
flow will have to be recalculated every time either Ra or Re is changed). Figure 6
shows the streamlines of the velocity field and the density plots of the temperature
field for the two-dimensional base flow. At Re =0, the flow consists of the pair of
primary vortices and the pair of secondary vortices which are located at the bottom
of the cavity, as discussed in the previous section. At low values of Re (Re = 25),
the primary vortices are slightly displaced downwards and secondary vortices are
suppressed under the combined action of the through-flow and the confinement at
the lower boundary. The size of the primary vortices increases as a result, and the
convection associated with them is slightly enhanced. However, with a further increase
in Re, the same mechanism incurs a suppression of the primary vortices from the
top and a reduction of their size. At Re =200, the primary vortices have completely
disappeared. Thus, the through-flow enhances convection at low Reynolds numbers
(below 25, in the set of Reynolds numbers we explored), but suppresses it at higher
Reynolds numbers.

4.3. Vertical heat flux

The efficiency of the convection is estimated by quantifying the vertical heat flux. For
this purpose, we compute the Nusselt number at the inlet of the cavity defined as

aT
- <> + (UT)yzl
ay y=1 Convective
aT ’
_ < (8) > + (UT)yzl
Y/ y=1 Conductive

and analyse its variations with the Rayleigh number for several fixed values of
Re. Here the reference conductive state is chosen as a uniform downward flow at
non-dimensional velocity RePr, without rolls. This way, the Nusselt number in (4.1)

Nu = 4.1
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FIGURE 7. Nusselt number Nu calculated at the inlet. Panel (a) shows two-dimensional
base flow for various values of Ra. The shaded region represents the unsteady case. Panel
(b) shows a comparison between Nu for two-dimensional (represented by solid symbols)
and three-dimensional (represented by hollow symbols) DNS at the same value of the
Rayleigh number. Points are obtained near criticality (hence, for different values of Re).

measures the enhancement of heat transfer due to the convective flow inside the cavity
and not that due to the average downward fluid motion. The temperature distribution
for this reference state is obtained by solving the steady advection-diffusion equation

V2T — (RePre, - V)T =0, 4.2)

with the same boundary conditions for the temperature as for the base flow (2.5)
and (2.7). The variations of Nu with the Rayleigh number for the two-dimensional
base flow are shown in figure 7(a). For Re = 0, the Nusselt number monotonically
increases with Ra. By contrast, for Re # 0, Nu first decreases before reaching a
minimum, and it goes below unity for Re = 75 to Re = 200. The decrease of Nu
below unity occurs as the two rolls form and gain in intensity. As they do so, they
redistribute heat laterally in the upper part of the pool. As they grow in size, they do
so ever closer to the top boundary and oppose the downward temperature gradient
near the corners and hence the heat flux through the upper boundary. When the
convective rolls have grown to occupy the entire cavity, however, their shape does
not evolve any more as Ra is further increased. In this regime, the heat flux near
the corners saturates and the main effect of the rolls is to convey cold fluid upwards
near x =0. The cooling of the region near the upper boundary that ensues leads Nu
to increase again and soon exceed unity. There are relatively few instances where
convection reduces rather than enhances heat transfer (i.e. Nu < 1). It has, for example,
been observed in the Rayleigh-Bénard convection of homeotropically aligned nematic
liquid crystal (Thomas, Pesch & Ahlers 1998).

5. Stability analysis
5.1. Growth rates and eigenvalue spectra

We now turn to the linear stability of the steady two-dimensional states found in §4.
We start by analysing the dependence of the perturbation growth o on the Rayleigh
number Ra, wavenumber k and mass flux Reynolds number Re. Figure 8(a—c)
shows the growth rate o as a function of wavenumber k for Re =0, 100 and 200.
For a particular value of Re, the growth rate o(k) is computed for a range of
Rayleigh numbers until supercritical regimes are encountered. Figure 8(d—f) shows
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FIGURE 8. Growth rates of leading eigenmodes as functions of the wavenumber k for
(@) Re =0 and Ra < 10*; (b) Re =100 and Ra <7 x 10*; and (¢) Re =200 and Ra <
3 x 10°. Solid symbols represent real leading eigenvalues, while hollow symbols represent
complex-conjugate pairs of non-real leading eigenvalues. Eigenvalue spectra for marginally
supercritical cases for (d) Re=0, Ra=7 x 10° and k=6; (¢) Re =100, Ra=4 x 10* and
k=4 and (f) Re=200, Ra=1.1 x 10° and k=7. Symbols: @, blue, stable eigenvalues;
M, red, the first unstable eigenvalue.

the eigenvalue spectra for Re (corresponding to figure 8a—c) near to the onset
of instability, in marginally supercritical regime. For Re = 0, all eigenmodes are
oscillatory (@ # 0) over the entire range of values of Ra we investigated. At low
wavenumber k >~ 4, a local maximum in o (k) is observed. We denote the set of
eigenvectors forming this maximum as ‘branch I'. These remain stable for all values
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FIGURE 9. (a) Growth rates of the leading eigenmodes at Ra = 10* for Re =0, 25, 50,
and 75. (b) Growth rates of the eigenmodes associated with branches I, II and III for
Re =200 and Ra = 1.8 x 10°. Each curve o (k) in figure 8 corresponds to the absolute
maximum growth rate over all three branches for each k.

of Ra we investigated. A second, absolute maximum exists around kK~ 6 and we shall
label the corresponding set of modes as ‘branch II’. The mode associated with this
maximum becomes unstable for Ra = 7 x 10°. The corresponding pair of complex
conjugate eigenvalues are shown in figure 8(d) as they cross the unit circle that
separates stable from unstable eigenmodes. Branches I and II (as well as branch III
discussed later in this section, and which is dominant in this case) are illustrated
more extensively in the example of Re =200 and Ra= 1.8 x 10° in figure 9(b).

When Re is increased from zero, the growth rate first increases for all k£ (keeping
the same value of Ra). Consequently, the critical Rayleigh number Ra.(Re) initially
decreases up to Re =25 (see figure 10a and table 2). The physical reason can be
traced to the structure of the two-dimensional base flow: increasing Re from zero
suppresses the secondary vortices near x = 0. These give way to the main bulk cells
which grow in size (see figure 6b). This implies that the effective flow length scale
increases and so does the effective Rayleigh number. Consequently, a lower Rayleigh
number is sufficient to trigger the instability.

For Re > 25, the effect is reversed. For all k, o (k) decreases, and the corresponding
critical Rayleigh number Ra.(Re) increases. This time, the effect originates in the
reduction in the size and intensity of the main cells in the base flow due to their
suppression by the inflow near the top boundary at y=1 (see figure 6¢). The decrease
of o (k) is, however, not uniform over the spectrum of wavelengths and the maximum
of o (k) associated with branch I increases in value compared to that associated with
branch II. This effect is best illustrated in figure 9(a), which displays o (k) versus k
at a fixed value of Rayleigh number (Ra = 10*) for Re = 0, 25, 50 and 75. From
Re =100 onwards, the most unstable mode becomes associated with branch 1. From
this point on, Ra. continues to increase with Re but more slowly than for Re < 100.

Up to Re=110, all calculated unstable eigenmodes are oscillatory. From Re =150, a
third branch (III) appears very close to branch I, with the specificity that all associated
modes are non-oscillatory (i.e. w = 0). For Re > 150, the mode associated with the
maximum growth rate in branch III becomes dominant and the onset of the instability
occurs through a non-oscillatory mode. The real eigenvalue associated with the single
fastest growing mode is represented in the eigenvalue spectra for Re =200 and Ra =
1.1 x 10° at k=7 in figure 8(f). At this point, the main cells in the base flow have
disappeared. Hence, the transition from the oscillatory to the non-oscillatory instability
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FIGURE 10. (a) Critical Rayleigh number, (b) critical frequency, and (c) critical
wavenumber as a function of Re. In (a) green (red) regions below (above) the curve
represents flow regimes that are linearly stable (unstable) to two or three-dimensional
perturbations. Symbols: @, data obtained from the LSA; O, three-dimensional DNS up to
Re =200 at slightly subcritical values of Ra; A, three-dimensional DNS up to Re =200
at slightly supercritical values of Ra.

is associated with a fundamental change in the nature of the base flow, as it switches
from a recirculation-dominated topology to one dominated by the through-flow. As
such, this transition separates a buoyancy-driven regime and a hydrodynamic one.

5.2. Variations of w. and k. with Re

The variations with Re of the critical frequency w. and wavelength k. at the onset
of instability reflect the transition between branches I, II and III, whose coexistence
is illustrated in figure 9(b). As Re increases, the variations of the frequency and
wavelength associated with the maximum of each of the branches differ: for Re < 100,
branch II dominates and over this interval, both w, and k. follow the non-monotonous
variations of Ra,. observed in the previous section. The switchover from branch II to
branch I observed at Re =100 translates into a discontinuity in the variations of both
. and k.. While o, practically doubles between Re =75 and Re =100, k. drops by
half over the same interval (evaluating the exact amplitudes of these discontinuities
would require a prohibitively large number of simulations). However, both . and
k. subsequently increase over the interval of dominance of branch I. The next
discontinuity occurs at Re = 150, at which point branch III becomes dominant at the
expense of branch I. Since branch III modes are non-oscillatory, @, drops to zero. At
the same time, the k. jumps up to higher values and continues to increase with Re
beyond Re = 150.
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Re Rac kc W

0 5.975 x 10° 63 5.6
25 2.467 x 10° 54 3.1
50  6.168 x 10° 62 4.1
75 1.887 x 10 7.5 54
100 3.621 x 10* 41 11.0
110 4307 x 10 42 119
150 7.345x 10 6.0 0
200 1.029 x 10° 6.6 0
300 2.250 x 10° 8.6 0
400 4.680 x 10° 10.6 0
500 8.737 x 10° 12.0 0

TABLE 2. Critical Rayleigh number, corresponding wavenumber along the homogeneous
direction and frequency at the onset of instability for Re ranging from zero to 500.

Discontinuities in length scale at the onset of instabilities are frequently observed
when convection is combined with forces other than buoyancy and viscosity. Usually,
the discontinuity appears when a parameter representing the ratio of two of the
forces in the system is varied, and it reflects the transition between different unstable
modes. In rotating magnetohydrodynamic (MHD) convection, for example, a transition
occurs between the thin convective plumes favoured by fast rotation and the large
convective rolls, favoured by the Lorentz force. As in the present case, each of these
patterns corresponds to a distinct branch of eigenmodes of the stability problem.
The transition between them takes place at a critical value of the ratio between
these forces. The corresponding change in length scale has been experimentally
observed to reach an order of magnitude (Nakagawa 1957) in agreement with
theoretical predictions (Chandrasekhar 1968; Aujogue, Pothérat & Sreenivasan 2015).
Similar phenomena are also observed in mixed convection in magnetic fields, at
the changeover between convection dominated regimes and shear-dominated ones
(Vo, Pothérat & Sheard 2017). While in rotating magnetoconvection, the transition
only involves non-oscillatory modes; it only involves oscillatory ones in mixed MHD
convection. The transition resembling most the one observed here, between oscillatory
and non-oscillatory modes, and with a discontinuity in wavelength, was observed when
decreasing the Prandtl number in rotating convection (Clune & Knobloch 1993).

Finally, in the range of larger Reynolds numbers, an asymptotic behaviour
associated with branch III emerges, where k. scales linearly with Re as k. =
(3.2+0.2) + (0.018 £ 0.001)Re.

5.3. DNS near criticality

To assess the relevance of the LSA, we perform DNS of the two-dimensional flow
perturbed by white noise as described in § 3.1, for each value of Re up to 200, at
slightly subcritical (r. < 0) and slightly supercritical (r. > 0) values of Ra. Here, r. =
(Ra/Ra.) — 1 is the criticality parameter. The data from these DNS, including Ra,
measured frequency and wavelength, are represented in figure 10. We stress that the
primary purpose here is not one of validation of the growth rate obtained by LSA
(even though this comes as a by-product), but to answer the question of whether the
LSA correctly identifies the mode that ‘naturally’ emerges from an unstable base state.


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.1015

Downloaded from https://www.cambridge.org/core. Coventry University, on 07 Jan 2020 at 17:55:39, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2019.1015

Mixed baroclinic convection in a cavity 885 A40-19

5 T

OLsA

(1/Dloglw ()]

t

FIGURE 11. Decay rate built on the time history of the w(f) velocity component at
(x, ¥, 2) = (0, 0.6, 0.5) obtained by DNS for Re =200 and Ra = 10°, compared to the
growth rate obtained by LSA.

Re Ra T, o(LSA) o(DNS) ¢,(%)

0 57x10°  —0.0460 —0.0601 —0.0602 0.2
25 20x10° —0.1893 —0.1919 —0.1917 0.1
50 6.0x10° —0.0272 -—0.0338 —0.0337 0.3
75 1.5x 10* —0.2051 —0.1387 —0.1385 0.1
100 3.0x10* -—0.1715 -0.1711 -0.1712 0.1
110 4.0x10* -0.0713 —0.1004 —0.1005 0.1
150 7.0x10* —0.0470 —0.1146 —0.1145 0.1
200 1.0x10° —0.0282 —0.1359 —0.1356 0.2

TABLE 3. Comparison of the decay rate computed from the LSA and DNS for r. < 0.
The relative error in the computation of growth rate from DNS and LSA is represented
by €,.

As such, it is essential that the initial condition be unbiased towards a particular mode.
This is the reason why white noise, rather than the most unstable mode, is used to
perturb the base state in the initial condition.

In all investigated cases, the perturbation was found to decay for Ra < Ra. and the
flow to bifurcate away from the base state for Ra > Ra.. The subcritical decay rate was
extracted from the DNS with an exponential fit to the long-time decay of w measured
at a single point in the domain as shown in figure 11 for Re =200 and Ra = 10°. The
asymptotic decay rate was always found within 0.3 % of the prediction of the LSA,
confirming that the fully nonlinear decay is dominated by the leading mode returned
by the linear stability (see table 3 for details).

Further confirmation that the leading mode identified by LSA drives the dynamics
near Ra = Ra,. is found by comparing critical frequencies and wavelengths, ., k.. In
the DNS, the perturbation is isolated by subtracting the steady two-dimensional base
solution from the result of the time-dependent three-dimensional simulation. Again,
an agreement with a relative error lower than 2% is found between the DNS and
the LSA.

5.4. Topology and time-dependence of the perturbation near criticality

Figures 12, 13 and 14, respectively, show the velocity magnitudes and vorticity
distributions in weakly supercritical cases associated with each of the three instability
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FIGURE 12. For Re = 0 and Ra = 7 x 10 (a) vorticity perturbation along the
homogeneous direction ¢/ computed from the LSA at z = 0 plane for k = 6;
(b) vorticity perturbation along the homogeneous direction ¢/ computed from the
DNS at z = 0 plane; (c¢) density plot for the magnitude of the velocity field and
(d) iso-surfaces of the z-component of vorticity. A movie representing the travelling
wave is available in the supplementary material (see supplementary movie 1, available
at https://doi.org/10.1017/jfm.2019.1015).

branches (respectively, for Re =0, Re = 100 and Re = 200). The time evolution of
the perturbation reconstructed from the LSA involves both real and imaginary parts
as of the LSA eigenvector

q/(x’ v, 2, t) =Re{(}(x, y)eat+i(kz+wt)}‘ (5‘1)

The snapshots of the topologies of the perturbation from LSA and DNS presented on
the figures are captured at the same phase.

Unsurprisingly, the topologies of the perturbations found in the DNS and LSA
precisely agree too. In all cases, the instability originates near the symmetry plane
x =0, just above the location where the jets driven by the baroclinic imbalance on
either side of the cavity meet. The driving mechanism is a destabilisation of the return
jet, with a different behaviour depending on the branch the unstable mode belongs
to: modes from branch II (Re < 75) develop into a travelling wave along e,. Since
the travelling wave is made up of two counter-propagative linear waves (respectively,
associated with each of the conjugate eigenvalues), the travelling nature of the wave
is determined by the complex amplitude of the unstable modes (Clune & Knobloch


https://doi.org/10.1017/jfm.2019.1015
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.1015

Downloaded from https://www.cambridge.org/core. Coventry University, on 07 Jan 2020 at 17:55:39, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2019.1015

Mixed baroclinic convection in a cavity 885 A40-21

(b)

(d)

y

pu :

B 30
30

T

z 0

13 z

FIGURE 13. For Re = 100 and Ra = 4 x 10* (a) vorticity perturbation along the
homogeneous direction ¢/ computed from the LSA at z=0 plane for k=4; (b) vorticity
perturbation along the homogeneous direction ¢/ computed from the DNS at z = 0
plane; (¢) density plot for the magnitude of the velocity field and (d) iso-surfaces of
the z-component of vorticity. A movie representing the standing wave is available in the
supplementary material (see supplementary movie 2).

1993). These cannot be obtained from LSA but appear in the fully nonlinear DNS
(see figure 12 and associated animation). By contrast, modes from branch I, which
are the most unstable for 100 < Re < 110, always develop into a standing wave with
transverse oscillations within the x-y plane.

6. Characterisation of the transition to oscillatory and non-oscillatory states
6.1. Stuart—Landau model

We now seek to characterise the bifurcation associated with the instabilities identified
in the previous section by means of a truncated Stuart-Landau equation. This model
has been widely applied to find the nature of bifurcations in a number of fluid flows,
for example, flow past a circular cylinder (Provansal, Mathis & Boyer 1987; Dusek,
Le Gal & Fraunié 1994; Schumm, Berger & Monkewitz 1994; Albaréde & Provansal
1995; Henderson & Barkley 1996; Thompson & Le Gal 2004), staggered cylinder
(Carmo et al. 2008) and rings (Sheard et al. 2004), and the flow confined around
a 180° sharp bend (Sapardi er al. 2017; Pothérat & Zhang 2018). The principle
traces back to the equation proposed by Landau (1944) to describe the transition to
turbulence, and later used by Stuart (1958, 1960) to understand the behaviour of the
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FIGURE 14. For Re = 200 and Ra = 1.1 x 10°: (a) vorticity perturbation along the
homogeneous direction ¢/ computed from the LSA at z=0 plane for k=7; (b) vorticity
perturbation along the homogeneous direction ¢ computed from the DNS at z =0
plane; (c¢) density plot for the magnitude of the velocity field and (d) iso-surfaces of the
z-component of vorticity.

plane Poiseuille flow. The Stuart-Landau model describes the growth and saturation
of the complex amplitude A(f) of a perturbation near the onset of instability as
(Landau & Lifsitz 1987)

dA ) i 5 5

E=(U+la))A—l(1+lc)|A| A+ 0A), (6.1)
where /€ R reflects the level of nonlinear saturation and ¢ € R is the Landau constant.
For [ > 0, the first two terms on the right-hand side of (6.1) provide a good description
of the evolution of the perturbation, and the saturation occurs through the cubic term.
In this case, the bifurcation is supercritical. For [ < 0, the cubic term accelerates
the growth of the perturbation, and higher-order terms are needed to saturate the
growth. This case corresponds to a subcritical transition. The equations for the time
evolution of the (real) amplitude |A(f)| and phase ¢(¢) are obtained by substituting
A(t) =]A(®)|e’? into (6.1) and separating the real and imaginary parts:

dlA| 3
— =0l|A| = l|A]’, 6.2
ar olAl —1|A] (6.2)
d
—dq; =w — Ic|A)°. (6.3)
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Equation (6.2) is rewritten as

dlog|A|

— 1A% 6.4
” o —lA| (6.4)

As noted by Sheard er al. (2004), this form of the Stuart-Landau equation makes
it convenient to determine o and [ from three-dimensional DNS (see §6.2) if
A(t) is defined as the time-dependent amplitude of one component of the velocity
perturbation, for example. The amplitude of the perturbation in the saturated state is
readily obtained by setting 9, =0 in (6.2):

|Asarl = ﬁ- (6.5)

Furthermore, if the flow settles down to a time-periodic state with constant amplitude
|Asar|, d¢p/dt becomes the constant angular frequency of oscillation w,, and (6.3)
yields

_ Wyaqr — W

c= . (6.6)

o

Thus, the Landau constant ¢ can be determined by computing the oscillation frequency
of the perturbation in the linear regime and at the saturation.

6.2. Nature of the bifurcations

We shall first determine the nature of the bifurcation by calculating constant / and
checking its sign. We follow Sheard ef al. (2004) and fit equation (6.4) to the time
variation of the envelope of |A(#)| extracted from the signal of the z-component
of velocity w(f) obtained at a single location, in the neighbourhood of [A| = O.
This particular choice for |A(#)| and the choice of location itself are guided by the
requirement of obtaining a clean enough signal. Other choices are possible (Sheard
et al. 2004), based on either local or global variables (Pothérat & Zhang 2018). The
analysis has been carried out in slightly supercritical regimes (r. > 0, but small) for
all values of Re investigated in this paper up to 200. Four representative examples are
shown on figure 15. In all cases, a small area very close to |[A| =0 is dominated by
numerical noise. The high precision of our DNS, however, keeps this interval small
compared to the area where the linear approximation (6.4) remains valid. Fitting
of (6.4) in the linear range provides the values of o and /. Comparing o to the value
returned by the LSA provides not only mutual validation for the linear stability and
the DNS, but also an estimate for the precision of the fit. Both values are reported
in table 4. The relative discrepancy remains below 6 % except for Re =0, where the
discrepancy is of 11.6 %.

At the onset of instability, / remains positive for 0 > Re > 75, which corresponds
to the range of values of Re where the instability sets in through branch II modes.
In other words, branch II modes become unstable through a supercritical Hopf
bifurcation. For 100 < Re < 150, by contrast, / < 0 indicates that the modes of
branch I destabilise through a subcritical Hopf bifurcation. This may appear as
surprising considering the very good agreement between the critical Rayleigh number
for the onset of instability found by DNS and LSA. Nevertheless, the small value
of [ suggests that the system may only be mildly subcritical. It is also possible
that the addition of white noise of moderate amplitude may not suffice to drive the
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FIGURE 15. Stuart-Landau analysis: variation of (dlog|A|/df) versus |A|*> and
extrapolation to |A| = 0 from which coefficients o and [/ are obtained for (a) Re = 0,
Ra=17x10% (b) Re=50, Ra=17 x 10*; (¢) Re =100, Ra =4 x 10*; and (d) Re =200,
Ra=1.1 x 10°. Here, |A(#)| is obtained from time-series of w(¢).

Re Ra 7. o o €y w w €, W — Wy
(LSA) (DNS) (%) (LSA) (DNS) (%)

0 7.0x10°  0.1715 0.1541 0.1744 11.6 59690  5.8698 1.7
25 3.0x10* 02161 0.0731 0.0736 0.7 3.3498 33211 09
50  7.0x10° 0.1348 0.1209 0.1282 5.7 43140 43982 1.9
75 2.0x10* 0.0599 0.0711 0.0730 2.7 54808 55099 0.5
100 4.0x10* 0.1047 0.1344 0.1351 0.5 11.599 11.624 0.2 0.942
110 4.5x10* 0.0448 0.0607 0.0622 2.4 11.890 11.938 0.4 0.628
150 8.0x 10* 0.0892 0.2100 0.2084 0.8 0 0 — —

200 1.1x10° 0.0690 0.1873 0.1917 23 0 0 — —

TABLE 4. Comparison of the growth rate and frequency computed from the LSA and
DNS for r. > 0. The relative error in the computation of frequency from DNS and LSA
is represented by €,,.

SO OO

growth of subcritical perturbations. Indeed, we verified that further increasing the
standard deviation of the added white noise to 0.01 and 0.1 did not alter the results.
Whether transition could occur for Ra < Ra,. could be answered by analysing whether
non-modal perturbations could grow (Schmid & Henningson 2001), and whether
optimal perturbation of sufficient amplitudes could trigger a subcritical transition
to another state, as it does for turbulence in pipes (Pringle, Willis & Kerswell
2012). For Re > 150, the instability occurs through non-oscillatory modes from
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FIGURE 16. (a) Time history of w(f) velocity component measured at (x, y, z7) =
(—0.6, 0.6, 0.5) for Re =0 and Ra =7 x 10°. (b) Frequency spectra obtained from the
time series of w(f), respectively, near the onset and near saturation.

branch III; / becomes positive again, indicating that this transition is of supercritical
type (supercritical pitchfork). In contrast with bifurcation through branch I, the
supercritical nature of the instability of modes from branches II and III is consistent
with the excellent agreement between LSA and DNS on the value of Ra for the onset
of instability and further establishes the relevance of LSA to determine the stability
of the flow in these cases.

6.3. Saturated states

Finally, we shall characterise the saturated states. The analysis was carried out for
each investigated value of Re up to Re =200, of which we present three typical cases.
As discussed in § 5.3, the three-dimensional DNS were performed for two values of
Ra in each case, one slightly subcritical and one slightly supercritical. As an example,
figure 16(a) shows the time history of w at a single point of the domain for the weakly
supercritical case of Re=0 and Ra=7 x 10°. The normalised frequency spectrum of
the time-series

E,(0) = 5|W(w), (6.7)

where w(w) is the Fourier transform of w(r), is then calculated over two intervals:
one near the onset (40 < 7 < 60) and one in the saturated regime (100 < ¢ < 120).
Both are represented in figure 16(b). The initial and saturated frequencies are nearly
identical (with relative error to the numerical precision) and differ by 1.7 % from the
frequency returned by the LSA. Given that the discrepancy between the frequencies
near the onset and in the saturated state differ by much less than the error between the
frequency near the onset predicted by LSA and DNS, we consider them to be identical.
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FIGURE 17. (a) Time history of w(#) velocity component measured at (x, y, z) =
(—0.6, 0.6, 0.5) for Re=100 and Ra=4 x 10*. (b) Frequency spectra obtained from the
time series of w(f), respectively, near the onset and near saturation.

In this case, from equation (6.6), the Landau constant ¢ is zero, to the precision of
our simulations. Following this approach, non-zero values of ¢ were found for other
values of Re when w — w,,, significantly exceeded the discrepancy between LSA and
DNS. One such example is shown in figure 17, for Re =100, where ¢ =—7.03 £0.01
and the discrepancy between LSA and DNS frequencies at onset is 0.2 %.

All calculated values of ¢ are reported in table 5. Here again, the three branches
identified in § 5 exhibit different behaviours: when the instability arises out of modes
in branch II, the Landau constant is zero. A shift in frequency does appear as soon
as the instability is due to modes belonging to branch I, leading to a negative Landau
constant. Finally, as branch III becomes dominant, DNS confirm that the steady
saturated state of the mode predicted by the linear stability is non-oscillatory. In this
case, the saturated amplitude predicted by (6.5) matches closely that observed in the
DNS, as shown on figure 18.

6.4. Heat flux in the saturated states

To finish, we compare the Nusselt number Nu in base two-dimensional state and the
bifurcated three-dimensional state at the onset of instability for all Reynolds numbers
in figure 7(b). The maximum difference between them is 0.2 %. Thus, there is hardly
any change in the heat transfer. This can be understood as the boundary conditions
impose that the horizontal heat flux must be conserved between the two boundaries
with periodic boundary conditions. This precludes any horizontal redirection of the
horizontal heat flux. Furthermore, the time and spatially periodic character of the
instability implies that a drastic change would have had to take place between the
streamlines in the (x-y) plane of the base flow and those of the bifurcated states for a
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FIGURE 18. Time history of w(#) velocity component measured at (x, y, z) =
(—0.5,0.6,0.5) for Re =200 and Ra=1.1 x 10°.

Re Ra [ c Branch  Nature of transition
0 7 x 10° 0.484 £ 0.001 0 II Supercritical Hopf
25 3x10° 1.475 £ 0.001 0 II Supercritical Hopf
50 7 x 10° 10.24 £0.03 0 II Supercritical Hopf
75 2 x 10 2.010 £0.001 0 II Supercritical Hopf
100 4 x 10* —0.223+0.001 —7.03+0.01 I Subcritical Hopf
110 4.5 x 10* —10.2+0.1 —0.04 £0.01 I Subcritical Hopf
150 8 x 10* 1.8470 £ 0.0001 — 1T Supercritical pitchfork
200 1.1 x10° 28.8£0.1 — 11T Supercritical pitchfork

TABLE 5. Summary of Stuart-Landau analysis of three-dimensional DNS for Re =0 to
Re =200 at Ra > Ra,.

significant change in Nu to be observed. Nevertheless, figure 7(b) expresses that heat
transfer at the onset of the instability decreases with Re because of the suppression
of the convection by the through-flow.

7. Conclusions

We presented a systematic analysis of the mixed baroclinic convection in a pool
with hot homogeneous through-flow fed in at the upper boundary and escaping
through a porous, semicircular, cold isothermal lower boundary. Linear stability
analysis, DNS and bifurcation analysis have brought answers to the four questions
set out in the introduction:

(i) The base flow is driven by a baroclinic imbalance along the lower boundary
that peaks at its corners. Downward flows on either side of the pool meet in
the symmetry plane to form two two-dimensional counter-rotating rolls. Being
deprived of shear, the sole effect of the through-flow on the base flow is to
displace the convective rolls downward. Once these are confined by the lower
boundary, further increasing the through-flow (i.e. Re) leads to their progressive
suppression and their eventual disappearance for Re > 200. Interestingly, at
low through-flow, this type of convection is less effective at carrying the heat
downward as conduction in solid moving downwards at the same velocity.

(i) A consequence of the suppression of the rolls is the stabilisation of the flow to
infinitesimal disturbances. Indeed, the critical Rayleigh number for linear stability
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of the base flow Ra. first decreases as the rolls are stretched down (Re < 25), then
increases with Re as they become suppressed.

(iii) The base flow was found susceptible to three distinct types of infinitesimal
perturbations, all of them with maximum vorticity near the symmetry plane,
where the rolls meet. For Re < 75, the most unstable mode (type II) is a
wave travelling in the e, direction. For 100 < Re < 110, instability sets in as a
standing oscillation (type I mode), whereas for Re > 150 the dominating mode
is non-oscillating (type III). The DNS have confirmed the findings of the LSA,
both in terms of topology of the modes and the critical parameters at the onset
(critical Rayleigh number, wavelength and frequencies).

(iv) Most interestingly, Stuart-Landau analysis conducted on DNS data revealed that
the nature of the bifurcation associated with the three modes varies too. While
mode II and IIl appear at a supercritical bifurcation, the onset of mode I is
subcritical.

Nevertheless, the values of the constant / indicate a low level of subcriticality. This
may partly explain why LSA and DNS are still in agreement at the onset of the
subcritical branch. Still, the change of nature of the bifurcation near the onset is an
interesting feature of this problem. It raises the question of whether the system would
support other convective states located on subcritical branches not connected to the
base state considered in this study. These would need to be ignited from a different
set of initial conditions. Such phenomenology was recently found in numerical models
for rotating convection in the Earth’s core, where the curvature of the boundaries plays
an important role too (Guervilly & Cardin 2016).

These results introduce a number of new features, compared to the reference cases
of convection in an inclined channel (Gage & Reid 1968) and mixed convection
in a cavity (Papanicolaou & Jaluria 1992), despite the similarities pointed out in
introduction. Unlike convection in an inclined channel, longitudinal rolls are present
in the base flow because the close, semicircular shape of the boundary does not
support an open flow in the direction of the baroclinic jets. As such, all unstable
modes involve a form of longitudinal variation. As direct consequence, the transversal
travelling waves found in inclined channels cannot exist, but, remarkably, longitudinal
travelling waves exist instead. Furthermore, while travelling waves found in the
inclined channel problem are always subject to a secondary instability, they evolve
into a stable periodic flow in our semicylindrical geometry. Unlike the cavity flow
where the through-flow is located on one side (Papanicolaou & Jaluria 1992), the
homogeneous through-flow studied here suppresses wave propagation, which turns
into standing oscillations for Re > 100 and finally into a non-oscillatory unstable
mode for Re > 150.

Finally, the relevance of these findings to continuous casting is again partial: we do
not submit the phenomenology found here as a full explanation of the dynamics of
these processes. Nevertheless, evidence of oscillatory phenomena in continuous casting
processes (Dorward, Beerntsen & Brwon 1996) suggests that the physical mechanisms
involved play a role among other effects. The phenomena we described may be
observed in some form, in specific configurations where they are not overshadowed
by other mechanisms not considered here (such as double diffusion or variations of
the pool shape with the flow parameters).
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