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We perform BiGlobal linear stability analysis on flow past a NACAO0012 airfoil at
16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state
two-dimensional base flows are computed using a well-tested finite difference code
in combination with the selective frequency damping method. The base flow is char-
acterized by two asymmetric recirculation bubbles downstream of the airfoil whose
streamwise extent and the maximum reverse flow velocity increase with the Reynolds
number. The stability analysis of the flow past the airfoil is carried out under very
small spanwise wavenumber 8 = 107 to approximate the two-dimensional pertur-
bation, and medium and large spanwise wavenumbers (8 = 1-8) to account for the
three-dimensional perturbation. Numerical results reveal that under small spanwise
wavenumber, there are at most two oscillatory unstable modes corresponding to the
near wake and far wake instabilities; the growth rate and frequency of the perturbation
agree well with the two-dimensional direct numerical simulation results under all
Reynolds numbers. For a larger spanwise wavenumber 8 = 1, there is only one
oscillatory unstable mode associated with the wake instability at Re = 400 and 600,
while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake
and far wake instabilities, and one stationary unstable mode for the monotonically
growing perturbation within the recirculation bubble via the centrifugal instability
mechanism. All the unstable modes are weakened or even suppressed as the span-
wise wavenumber further increases, among which the stationary mode persists until
B =4.©2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945005]

. INTRODUCTION

Low Reynolds number flow past an isolated airfoil is relevant to a variety of applications such
as micro-air vehicles, insect-type bionic air vehicles, and civil and marine engineering circum-
stances. Due to an increase in demand from these and related industries, airfoils operating at low-Re
regime are needed and are being utilized in engineering applications.' The airfoils in these appli-
cations are normally operated at high angle of attack (AoA) in order to get sufficient lift, and may
consequently suffer from flow separation due to an adverse pressure gradient (APG) field over the
suction surface. Flow unsteadiness is commonly encountered in the separated shear layer via the
Kelvin-Helmholtz mechanism, and in the wake flow in the form of a Karman street. The airfoil
may experience undesirable load variations as a result of flow unsteadiness which may even induce
structural failure. It is clear that flow control in such applications will be an important technological
requirement. As a precursor to devising control strategies, we believe it is important to understand
and quantify the flow stability characteristics for the low-Re flow past airfoils. Computing the global
spectrum of the flow has successfully led to reduced order models (e.g., the work of Berkooz et al.”
and Schmid?) and control techniques (e.g., the work of Barbagallo et al.* and Hervé et al.”).

Linear stability analysis of the separated flow past an airfoil has been performed based on
experimental (e.g., the work of Boutilier and Yarusevych®) or direct numerical simulation (DNS)
(e.g., the work of Jones et al.”) result. The time-averaged flow field is usually used as the base flow
which is further assumed to be a locally parallel flow. The Orr-Sommerfeld equation® governing
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the stability of the viscous parallel flow is then solved to analyze the local stability characteris-
tics in the plane perpendicular to the incoming flow at different streamwise stations. This kind
of one-dimensional local stability analysis is suitable for parallel or weakly non-parallel flows
in which the flow field only substantially varies in one direction, but is perhaps not an appro-
priate methodology for the separated flow past an airfoil at high AoA since the flow is essentially
non-parallel, especially within the recirculation bubble. The two- or three-dimensionalities of both
the base flow and the perturbation have to be taken into account in the stability analysis for a more
comprehensive characterization of the flow field and perturbation.

Owing to the growing computing capabilities and the advancements of novel numerical tech-
niques, the three-dimensional global linear stability analysis method, termed as TriGlobal method,
is employed for simple non-parallel flows, as reviewed in the works of Theofilis,”!* Chomaz,'' and
Sipp et al.'> The method takes into consideration the three-dimensionality of the base flow and the
perturbation, and therefore is the most generalized form of linear stability analysis. However, the
generalization is accompanied by the high computational cost which restricts this method in relatively
simple geometries (e.g., the work of Tezuka and Suzuki'® and Bagheri et al.'*). For most numerical
simulations of flow past an isolated airfoil or other configurations using either the high-fidelity DNS
or the large-eddy simulation (LES) approach, the computational domain is normally assumed straight
in the spanwise direction and periodic boundary condition is prescribed for all primitive variables
(e.g., the work of Jones et al.,’ Kitsios et al.,'”” Zhang et al.,'® and Zhang and Samtaney'”'®). The
variation of the flow along the homogeneous spanwise (z-) direction is significantly weaker than the
other two inhomogeneous directions, i.e., 0¢/0z < d¢/0x and d¢/0z <« d¢/Idy in which ¢ is any
flow variable. The BiGlobal stability analysis method is proposed to take the advantage of this feature
by assuming the perturbation in the form of a normal mode in the spanwise direction, thus the primary
perturbation characteristics in the cross-sectional (x-y) plane are preserved and the computational
cost is significantly reduced. The BiGlobal linear stability analysis has been employed for a number
of physical problems, such as the flow in a channel,'*?? over a backward-facing step?>~> or a bluff
body.?¢ It has also been employed for the problem of flow past an isolated airfoil. Theofilis et al.”’
first studied the incompressible flow past a NACA0012 airfoil at Re = 1000 and AoA = 5° based on
the spectral/hp element method. The results reveal that with a large computational domain, the most
unstable mode in the wake is observed far away from the airfoil. More extensive studies have been
carried out by Kitsios et al.'>?® and Rodriguez and Theofilis** wherein they developed a massively
parallel code based on the spectral collocation method and investigated the incompressible flow past
a NACAOQO15 airfoil at Re = 200 and AoA = 18° in which the wake instability is an obvious feature.
The results show that the two-dimensional base flow is unstable to the three-dimensional perturbation
at spanwise wavenumber S = 1. The stationary unstable mode corresponding to the instability in
the recirculation bubble and the oscillatory unstable mode corresponding to the wake instability are
observed under the parameters investigated.

The stability of even higher Reynolds number compressible flow past an airfoil has been
analyzed using the two-dimensional global stability analysis approach.’*-33 In these simulations,
the Reynolds number is of the order O(10°-107) and the flow is inherently unstable. The first
difficulty in performing such a study at a relatively high Reynolds number is the computation
of the two-dimensional steady-state base flow. Crouch et al.**3! and Iorio et al.’® solved the
steady-state Navier-Stokes equations using the Spalart-Allmaras turbulence model to obtain the
base flow, while Fosas de Pando et al.’? used the time-averaged flow field as the base flow since it
is considered to accurately reproduce the frequencies in nonlinear simulations.>* However, the base
flow obtained either from the steady Reynolds-Averaged Navier-Stokes (RANS) computation or
by time-averaging of the unsteady flow does not necessarily satisfy the steady-state Navier-Stokes
equations in principle. The eddy viscosity parameterization in the RANS turbulence model is based
on certain assumptions, typically of significance in engineering contexts. Moreover, other assump-
tions, for example, the balance of turbulent production by dissipation, is confirmed to be invalid for
a variety of flow configurations.'®*> Since the near wake flow of a bluff body is accelerated by the
flow instability,?® stability analysis based on the time-averaged flow leads to dramatically different
predictions regarding both the growth rate and frequency of the perturbation compared with the
stability analysis of a steady-state base flow.>*37-38
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It is concluded from the above discussion that presently the global stability analysis on flow
past an isolated airfoil is only performed for low-Re incompressible flow where the base flow can
be obtained by directly integrating the governing equations,'>?%2?° and for high-Re compressible
flow either in the RANS framework or using the time-averaged flow field as the base flow.?*-3* The
objective of the present study is to investigate the stability characteristics of incompressible flow
past an airfoil in the low-Re regime Re = 400-1000. The Reynolds number in this study is compa-
rably higher than the previous studies'>>®? and the flow is unsteady, thus the results reveal the flow
instabilities beyond the first Hopf bifurcation point. The numerical methods employed are free of
any assumption or turbulence model, thus both the base flow and the perturbation characteristics
are obtained following the original (linearized) Navier-Stokes equations. The base flows are ob-
tained using an in-house finite difference code in combination with the selective frequency damping
(SFD) method?® and satisfy the steady-state Navier-Stokes equations. We perform BiGlobal linear
stability analysis on the flow past a NACAQ0012 airfoil at AoA = 16°. Computations are performed
for the small spanwise wavenumber to simulate the long-wavelength perturbation which essentially
mimic two-dimensional perturbation, and the medium and large spanwise wavenumbers for the
small-wavelength perturbation that usually occurs in strong three-dimensional flows. For a detailed
understanding of the early development of the perturbation, the present work only focuses on the
temporal growth characteristics, while the spatial growth is not covered.

The present work is organized as follows. Section II presents the general descriptions of the
physical problem, the mathematical formulation, and the numerical methods. The derivations and
assumptions of the governing equations of the perturbation are presented, and the solution method
of the generalized eigenvalue equation is presented. Section III presents the results and discussion,
including the computation of the base flow and the two-dimensional “DNS” to examine the flow
patterns. The stability characteristics of the airfoil separated flow are shown under both small and
large spanwise wavenumbers. Some conclusions are given in Section IV. The verification of our
code and the summary of the eigenvalue of the unstable modes are given in Appendices A and B.

Il. NUMERICAL SETUP
A. Problem description

The schematic configuration of the present simulation is shown in Figure 1 along with the grid
details in the region close to the NACAQO012 airfoil. The airfoil is rescaled to unit chord length
C and is extended to include a sharp trailing edge located at (x/C,y/C) = (1.0,0.0). The angle
of attack is 16°. The physical domain size is 80C in the x-direction with a wake length of 49C,
and 60C in the y-direction. This large domain size is chosen based on similar studies by Kitsios
et al."> and Rodriguez and Theofilis* to minimize the effect of the artificially imposed boundary
conditions on the flow around the airfoil. The domain is discretized by a 1024 x 128 C-type grid.
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FIG. 1. Schematic of the physical domain and the grid details close to the airfoil. The grid is plotted every fourth gridline in
both directions for clarity.
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The incompressible flow is coming from the left of the computational domain and leaves from the
right side. The velocity of the incoming flow is (u,v) = (Up,0). The Reynolds number is defined as
Re = pUyC/v, where p = 1 is the density of the incompressible flow. The stability characteristics of
the flow are investigated at Re = 400, 600, 800, and 1000.

B. Governing equations

To determine the stability characteristics of the flow, the primitive variables in the Navier-
Stokes equations are expressed as a sum of a steady-state base flow and a perturbation,

¢('x’ y’Z’t) 25()‘" y)+8¢’('x’ y’Z’Z)’ (l)

where ¢ = (u,v,w,p) is the vector of velocity components and pressure, ¢ is the two-dimensional
steady-state base flow, and £¢’ (< ¢) is the perturbation. For the BiGlobal linear stability analysis,
the perturbed velocity and pressure are assumed in the form,

¢'(x,y,2,1) = d(x, y)e'P " 4+ c.c. (complex conjugate), 2)

where z is the spanwise direction, ¢ is the time, 8 is the spanwise wavenumber (here we restrict
B € R), and A = Re(1) + ilm(1) is the complex circular frequency in which the real part Re(1) is
the growth/damping rate and the imaginary part Im(1) is the phase angle. Since the perturbation is
physically a real number, it is customary to add the complex conjugate. A positive Re(1) indicates the
exponential growth of the unstable mode, while a negative value reflects the damping of the pertur-
bation in time. The flow is considered unstable if it has at least one eigenmode with positive Re(1).

In BiGlobal stability analysis, we consider three-dimensional perturbation on a two-dimensional
steady-state base flow. Since the flow is assumed homogeneous in the spanwise direction, the
perturbations are either stationary or traveling in opposite z-direction. Consequently, the expression
of the perturbation in Eq. (2) can be simplified without loss of generality by considering only the

symmetric Fourier modes as?32440:41
u'(x,y,z,t) = i(x, y)cos(Bz)et +c.c., 3)
v'(x,y,2,1) = H(x, y)cos(Bz)e! +c.c., 4)
w'(x,y,z,1) = d(x, y)sin(Bz)e + c.c., ©)
P'(x,y,2,1) = p(x, y)cos(Bz)e*” + c.c. (6)

This simplification reduces the storage requirement for our BiGlobal analysis compared with the
original formulation since all the coefficients in the eigenvalue equation are real, as shown below.

Recall that the base flow is steady-state and two-dimensional and the primitive variables in
Eq. (1) are substituted into the original Navier-Stokes equations with the following assumptions:

T=0, 4.=0, 4 =0, )

in which the subscript indicates the spatial or temporal differentiation. The resulting equations for
the base flow are

Uy +v, =0, (8)

Uy +V Uy =—D,/p+ (Uex +Uy,)/Re, 9)

Uvy+00,=-p,/p+ Uxx+0yy)/Re. (10)

The linearized equations for the perturbations by omitting the high-order infinitesimal terms become
iy +0,+ B =0, (11)

A+ ully + Vi, + Uy + 0ty = =P/ p + (lxx + 1y, — BYi)/Re, (12)

AD +uby + 00y + 005 + 00, = =P,/ p + (Oxx + Dyy — B*0)/Re, (13)

A + uthy + 0, = Bp/p + (Dyx + by, — 2D)/Re. (14)

The computation of the base flow solution will be discussed in Section III B. Governing
Equations (11)-(14) for the perturbations are spatially discretized by the second-order central
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difference scheme. Zero boundary condition is prescribed for the perturbed velocity at the airfoil
surface and the inflow boundary, and homogeneous Neumann condition at the outflow boundary.
The pressure satisfies the compatibility condition at the airfoil surface and is extrapolated at the far
field boundaries.'>*°

C. Solution method

The governing equations for the perturbations (Egs. (11)-(14)) can be cast as a generalized
eigenvalue problem,

Ap = AMé, (15)

where the eigenvalue A, the eigenfunction q3 = (i,0,w, p), and the spatial discretization operator A
are functions of the mesh and the parameter space (¢, Re, ). In this study, this system is solved
for the eigenpair (1, ¢) using the implicitly restarted Arnoldi method (IRAM) in the ARPACK
package.*” Since it is practically expensive to obtain all the eigenmodes, we only search for all the
unstable eigenmodes (Re(1) > 0) and a portion of the least-stable ones. The shift-invert transforma-
tion is employed to accelerate the convergence. Given a complex shift o, Eq. (15) is transformed
as

(A-oM)'Mé=¢/(A-0). (16)

The ARPACK package is used to solve Eq. (16) to find a certain number of eigenvalues closest to
the complex shift 0. Since the IRAM works in a reverse communication mode, we have to repeat-
edly provide the vector (A — o M)~'M to the solver. Instead of the expensive inversion operation
on the large sparse matrix (A — o M)~!, we assume V = (A — o M)"'M¢ (V € C) and compute V by
solving the following linear system:

(A= oMV = Mé. (17)

The linear system is solved using the MUMPS package**** which utilizes the multifrontal LU

factorization. The coefficient matrix A — oM is factorized and stored in the initialization stage, and
Eq. (17) is repeatedly solved during the solution procedure to provide the solution vector V to the
ARPACK solver. We choose a number of complex shift o to cover a sufficiently large region of
Re(1) > 0 in the complex plane in search for the unstable eigenmodes, and the least-stable ones by
choosing a number of complex shifts with Re(o") = 0 and 0 < Im(o) < 10. Since the operator A is
real, it has complex conjugate eigenvalues that are symmetric about the real axis, hence we only
search for those with Im(c-) > 0. Note that the conjugate ones are not plotted in the following fig-
ures. To ensure the convergence and correctness of the computed eigenmodes, we use the following
criterion for both the real and imaginary parts of the eigenpairs to keep only the converged results:>>

A — AMP|lo < 107%,  |I(A — AM)/(AP)|l> < 107°. (18)

The code for the BiGlobal linear stability analysis is verified through the problem of Poiseuille
flow in a duct, as described in Appendix A.

lll. RESULTS AND DISCUSSION
A. Two-dimensional unsteady flow

We first perform nonlinear two-dimensional “DNS” (this is not DNS in the strictest sense as
this flow is not 3D) on the unsteady flow around the airfoil under different Reynolds numbers for
a general understanding of the flow pattern. A 1024 x 128 grid is employed as shown in Figure 1,
and the same mesh in the x-y plane is also used for the BiGlobal stability analysis. These 2D
results are obtained using a semi-implicit fractional step finite difference method. The momentum
equations are spatially discretized by a second-order central difference scheme, and temporally
discretized by the Adams-Bashforth scheme for the convective terms and implicit scheme for the
viscous terms. Uniform incoming flow is prescribed at the inlet and convective condition is applied
at the outflow boundary. The simulation starts from a zero field and is integrated in time for about
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FIG. 2. Instantaneous vorticity field for the two-dimensional unsteady simulation plotted at w = [-2,2] with Aw =0.1.

200C/U,. For the Reynolds numbers under investigation, the grid is guaranteed to be sufficiently
fine around the airfoil with normalized mesh spacings of A&}, ~ 2.7 and an},, ~ 1.4 for the first
layer grid. These normalized mesh spacings are well within the limits imposed by well accepted
mesh spacing criterion for turbulent simulations*’ and the mesh is deemed sufficient for the present
study. The simulations are performed using an in-house code that has been validated in our previous
works. 018

The unsteady flow pattern is presented by the instantaneous vorticity field in Figure 2. The
periodic shedding of the flow is clearly observed downstream of the airfoil. The low-Re flow is well
organized and behaves with perfect time periodicity. As the Reynolds number increases, the flow
becomes less periodic and more stochastic especially in the far wake region. The different wake
patterns are further quantified by the temporal power spectra of velocity monitored at some certain
probes as shown in Figure 3. The probes are placed to record the time histories of the transverse
velocity v/Uy above the middle of the airfoil (P1), above the trailing edge (P2), and in the near and
far wake regions (P3-P5). The Strouhal number slightly increases with the Reynolds number. The
flow is time-periodic upstream of the trailing edge and in the near wake (P1-P4) for all Reynolds
numbers, as seen by the sharp fundamental and its integer multiple harmonics. For Re > 600, the
spectrum of the transverse velocity in the far wake (P5) tends to become broadband without clear
harmonics and the fundamental frequency slightly shifts, reflecting the growing non-periodic fluc-
tuations. The loss of perfect time periodicity in the far wake region is observed for Re = 1000 in
Figure 2.

B. Base flow

The base flow is the equilibrium state about which the stability characteristics are investigated.
The flow past an airfoil becomes unsteady when the Reynolds number is beyond some critical value
depending on the airfoil geometry and angle of attack. The base flow normally cannot be obtained
by directly integrating the Navier-Stokes equations in time since the unstable nature of the flow
will induce vortex shedding making the flow unsteady, never attaining a steady state. The base
flow solution can be computed by directly solving the nonlinear boundary value problem written
in Egs. (8)-(10) using the Newton-type methods, but this requires a specific solver. In order to
efficiently compute the base flow by slightly revising an existing Navier-Stokes solver, Akervik
et al.*® proposed the SFD method to obtain the steady solution of the Navier-Stokes equations. In
this method, a forcing term and a time derivative term are added to the momentum equation,
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FIG. 3. Temporal power spectra of the transverse velocity v/Uq measured by probes at different positions. The coordinates
of the probes are (from P1 to P5): (x/C, y/C)=(0.5776,0.3037), (0.9965, 0.4179), (1.4975, 0.0028), (4.9823, 0.0044), and
(20.0787, —0.0113). The spectra in each subfigure are artificially separated for clarity.

u, + @ V)u=-Vp/p+ VUu/Re — y(u-q), (19)

where u is the velocity vector of the base flow and q is a field vector with the same unit as u; y is a
positive user-defined parameter. An extra ordinary differential equation (ODE) is also added to the
system of governing equations,

q; = (U-q)/A, (20)

where A is also a positive user-defined parameter. The additions of the forcing term and time deriv-
ative term and the ODE provide a feedback mechanism to the original governing equations to damp
the unstable modes. By solving the system of equations with proper values of y and A (respectively,
1.0 and 5.0 in this work), the steady base flow is obtained satisfying u, ~ 0 and q ~ u after the
computation converges.

In the present study the governing equations for the base flow are solved by integrating in
time using a semi-implicit fractional step method. The derivatives are spatially discretized by the
second-order central difference scheme with a cell-centered formulation. Figure 4 shows the conver-
gence histories of the maximum values of [u — q| for the streamwise and transverse velocity compo-
nents. In all of our computations, the maximum pointwise residual typically converges to O(107'3),

2 2
o Re=400 f 0+ o Re=400 T
o Re=600 i o Re=600
s Re=800 r 2 s Re=800 r
’ v Re=1000 ¢ 4] v Re=1000
> S
' L6 i
E: AR i
) ‘E"’E A
8, Lo o0 . L
90AAA AA
1] Bogets L o, i
Bt ococabaes] 658 oS
-14 i i i i -14 i i o
0 500 1000 1500 2000 0 500 1000 1500 2000
w/C tw/C

FIG. 4. Convergence histories of [u— q|max for the computation of the base flow.
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FIG. 5. Streamlines of the base flows for (from (a) to (d)) Re =400, 600, 800 and 1000.

which guarantees a steady-state (possibly unstable) base flow solution satisfying Egs. (8)-(10).
The base flow solution and its spatial derivatives are then substituted into Eqgs. (11)-(14) for the
computations of the eigenpair (1, ¢).

The base flows obtained by the SFD method at different Reynolds numbers are presented in
Figure 5. The streamlines are plotted around the airfoil and in the near wake. The flow topology
is quite similar for all Reynolds numbers. Two asymmetric counter-rotating recirculation bubbles
form above the leeward surface and downstream of the trailing edge. The two bubbles are of
different sizes due to the inclination of the airfoil with the upper bubble being the larger one. As
the Reynolds number increases, the size of the two bubbles noticeably increases in the streamwise
direction with a minor increase in the transverse direction. The bubbles are unstable and periodic
shedding will commence in the unsteady Navier-Stokes simulation after the constraints (the forcing
term and ODE) are removed. Figure 6 shows the distribution of the negative streamwise velocity,
representing the reverse flow in the recirculation bubbles. As the Reynolds number increases, the
reverse flow becomes dominant in the near wake; it covers a larger area extending downstream with
monotonically increasing maximum velocity. The variation of the streamwise velocity profile in the
wake is shown in Figure 7. Consistent with the findings in Figure 6, the velocity deficiency is more
pronounced as the Reynolds number increases and gets weaker away from the airfoil, although still
discernible in the far wake x/C = 30. The nonuniform distribution of the streamwise velocity along
the y-direction reflects the non-zero strain, and there is an inflection point in the velocity profile in
both the near wake and far wake. The two-dimensional base flow may be inviscidly unstable based
on the Rayleigh criteria.®

C. BiGlobal stability analysis for small spanwise wavenumber

In this section, the BiGlobal linear stability analysis is performed for a small spanwise wavenum-
ber 8 = 107*. The steady flows shown in Figure 5 serve as the base flows. For the small wavenumber,
the spanwise wavelength of the perturbation is sufficiently large (L = 27/ ) that the stability charac-
teristics ought to be close to flow subjected solely to two-dimensional perturbation (8 = 0). Figure 8
shows the unstable and a portion of the least-stable eigenvalues. It is noted here that the stable modes
are discrete as predicted by the present modal analysis; however, they will not be further analyzed
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v S 02
00 1 L L L L 1 L L L L 1 L L L L 1 L L L OO 1 L L L L 77 L L L L 1 L L L L 1 L

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
0.8 T AR | 0.8 d
0.6 (@ 0.21 -0.17 -0.13 -0.08 -0.04 -0.00 0.6 0 0.24 -0.20 -0.16 -0.12 -0.08 -0.04 0.00
et oo onomason 09 | Semoensnamons
0.2 x — = 0.2 XE‘; =
00, T 00p IR

| PR SR | T
0.0 1.0 2.0 3.0 0.0 1.0

L
2.0 3.0

FIG. 6. Streamwise velocity u /Uy of the recirculating flow for (from (a) to (d)) Re =400, 600, 800 and 1000.
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FIG. 7. Streamwise velocity distributions in the wake for the base flow.

since we are only interested in the unstable modes. The flow is unstable to the three-dimensional
perturbation under all Reynolds numbers investigated as eigenvalues with positive real part are
observed. The perturbations with lower frequency are amplified or weakly damped, while the high
frequency ones are strongly damped. There is one distinct oscillatory unstable mode with non-zero
Im(1) at Re = 400 and 600, while two are observed at Re = 800 and 1000, namely, the primary
and secondary oscillatory modes, with the former one has a larger Re(1). The secondary oscillatory
mode corresponds to the far wake instability and is also observed in the two-dimensional global
stability analysis for flow past a circular cylinder when the Reynolds number beyonds a critical
value.*® As the Reynolds number increases, the flow becomes more unstable as the growth rate of the
primary oscillatory mode increases and the stable modes are less damped. There appears a branch
of weakly unstable modes with medium frequencies as shown in the inset of the figure, which is
also observed in the works of Kitsios ez al.'®> and Rodriguez and Theofilis.”” These weakly unstable
modes correspond to the far wake instability biased towards to the outflow boundary which makes
the flow less regularized compared with the time-periodic state in the near wake region (see the curve
of P5 in Figure 3) and are possibly caused by the truncation of the computational domain.*’

To examine the dependency on mesh resolution, a similar analysis with the same domain size
(80C x 60C) but a finer 2048 x 256 mesh is carried out at Re = 1000. The computed results, in
terms of the growth rate and frequency of the primary oscillatory mode, are close to those obtained
with the present 1024 X 128 mesh with a maximum relative error of about 2.8%. To limit the
computational expenditure, we continue all further computations with the present 1024 x 128 mesh.

The spatial structure of the primary oscillatory mode is shown in Figure 9 by the real part
of the streamwise and transverse perturbed velocities scaled by |@|max (and the same hereafter).
The structures exhibit classical features of the wake type mode that are expected in flow past bluff
bodies.*®*’ The perturbation originates in the near wake where the separated shear layer starts to
shed. As the Reynolds number increases, the perturbed flow is more dominant in the near wake
but is less pronounced in the downstream region. The Reynolds number has a decisive effect on
the perturbed velocities in that both Re(#Z) and Re(?) increase in magnitude with it, reflecting the
progressively dominant two-dimensional perturbed flow field at high Reynolds numbers.
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FIG. 8. Eigenvalue spectra at 8 = 107,
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FIG. 9. Eigenfunctions of Re(i) (left column) and Re(d) (right column) of the primary oscillatory mode at 8 =107
(a) Re=400 and A =(0.2956,2.6921); (b) Re=600 and 2 =(0.5126,2.6794); (c) Re=800 and A =(0.6202,2.5664);
(d) Re =1000 and A =(0.6783,2.4254).

Since the BiGlobal linear stability analysis at 8 = 107 is partly aimed at examining the sta-
bility characteristics of the two-dimensional flow, we separately perform two-dimensional “DNS”
to compare the early stage of the temporal growth of the perturbation. The continuity equation and
Eq. (19) (without the forcing term) are directly integrated in time using our solver described in
Section IIT A, and the perturbed velocity is recorded at several probes downstream of the airfoil
trailing edge. Three direct simulations are carried out with different initial conditions. The first
is the BF case in which the direct simulation is initialized with the base flow solution (u, v, p);
the infinitesimal perturbation then originates from the round-off error and numerical residual. The
second case is termed as BF+PI4; the initial condition is taken as the base flow solution (u, v, p)
superimposed with the perturbation (#’, v’, p’) obtained from the primary oscillatory mode of the
BiGlobal stability analysis, as exemplified in Figure 9; the perturbation is scaled with the maximum
magnitude Vu’?> + v’? equals to 107!4. In this case, the perturbation stems from both the round-off
error and numerical residual as well as the artificially imposed initial perturbation. The third case
is termed as BF+P10, which is similar to the previous one except that the maximum magnitude
equals to 107'°, The temporal growth of the perturbed transverse velocity is given in Figure 10. The
maximum perturbed velocity grows exponentially (i.e., linearly when plotted using the natural loga-
rithmic scale), and the growth rate increases with the Reynolds number. The three simulations give

10 L L L L L 0 L L L L L
(@) Re =400 (b) Re = 1000 f
5] L
-154 o BF r @ BF
o BF+Pl4 101 o BEtPI4 3
2 BF+P10 BF+P10
~ 20 [ =~
S gt »
= A =
= Z 201 L
.5 254 [ 5
251 L
304 il L
30 ] L
=35 +— T T T T =35 +— T T T T
0 10 20 30 40 0 10 20 30 40
tU /C tU /C

FIG. 10. Temporal growth of the perturbed transverse velocity |v —v|/Uy probed at (x/C, y/C) =(1.4975,0.0028) for the
three 2D “DNS” studies. The hollow symbols indicate the local maximum value.
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FIG. 11. Temporal growth of the local maximum value of |v —v|/U.

consistent predictions regarding the growth rate and frequency. It is noted that the BF and BF+P14
cases produce almost identical growth histories, while the perturbed velocity in the BF+P10 case
is several orders of magnitude larger. By comparing the results in the three cases, we can safely
conclude that the combination of round-off error and numerical residual is sufficiently reliable and
effective in stimulating perturbations and reproducing its temporal development within the linear
regime.

The time history of the local maximum perturbation of the BF case is extracted and plotted
in Figure 11 for the evaluation of the growth rate and frequency of the perturbation. The local
maximum of the perturbed velocity during the very initial stage (+ — 0) is not shown because its
small magnitude value (<10~') prevents an accurate quantification. The growth rate and frequency
are estimated from the slope and the horizontal interval of the discrete maxima, respectively, during
the exponential growth stage in Figures 10 and 11. The perturbed transverse velocity recorded at
the two probes show identical growth rate and frequency at all Reynolds numbers, hence we only
list the results obtained from the near wake probe (x/C, y/C) = (1.4975,0.0028) in Table I since
it corresponds to the primary oscillatory (most unstable) mode. It is seen in the table that the
BiGlobal stability analysis yields good predictions in terms of the growth rate and frequency of
the perturbation at all Reynolds numbers, which justifies the assumption that the stability analysis
at small spanwise wavenumber reflects the growth of the nominally two-dimensional perturbation.
We, therefore, consider the reliability of the present BiGlobal stability analysis code to be properly
validated.

D. BiGlobal stability analysis for medium and large spanwise wavenumbers

In this section, the BiGlobal linear stability analysis is performed for medium and large span-
wise wavenumbers at S = 1, 2, 4, and 8 to study the stability characteristics of the two-dimensional
base flow to three-dimensional perturbation. For each successive wavenumber, the spanwise wave-
length is halved. Figure 12 gives the eigenvalue spectra at § = 1. The spectra are generally similar

TABLEI. Summary of the growth rate and frequency of the perturbation predicted by the 2D “DNS” and the BiGlobal linear
stability analysis at 8 = 107*. The first value in each cell is the growth rate and the second is the frequency. For the 2D “DNS”,
the two values are estimated from Figure 11(a). For the BiGlobal linear stability analysis, the two values are calculated from
the eigenvalue of the primary oscillatory mode in Figure 8, in which the growth rate is Re() and the frequency is Im(2)/27.

Item Re =400 600 800 1000

(0.6625, 0.4247)
(0.6202, 0.4085)
(6.4,3.8)

(0.7160, 0.3994)
(0.6783, 0.3860)
(5.3,34)

2D “DNS”
BiGlobal analysis
Relative difference (%)

(0.2754, 0.4549)
(0.2956, 0.4285)
(7.3,5.8)

(0.5363, 0.4459)
(0.5126, 0.4264)
4.4, 4.4
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FIG. 12. Eigenvalue spectra at 8 =1.

to those obtained at 8 = 107 in that there is one oscillatory mode for Re = 400 and 600 but two
for Re = 800 and 1000. The weakly unstable modes associated to the far wake instability observed
at B = 107 are suppressed. We observe a stationary mode with Im(1) = 0 at Re = 800 and 1000,
which implies that the perturbation grows exponentially in time without phase angle variation. The
modal structures of the oscillatory mode for Re = 400 are shown in Figure 13 by the real parts of
the perturbed velocity and pressure. The oscillatory mode corresponds to the wake instability and is
two-dimensionally dominated with Re(#) > Re(i) and Re(d) > Re(). The perturbed velocity and
pressure exhibit similar structures at Re = 600 as shown in Figure 14, which are only pronounced
within a small region in the near wake close to the airfoil but are negligible for x/C > 12. Both
the maximum values of Re(i) and Re(?) increase in magnitude, showing stronger perturbations in
the x-y plane. The modal structures of the three unstable modes for Re = 1000, namely, the primary
oscillatory, secondary oscillatory and stationary modes, are shown in Figures 15-17. The secondary
oscillatory mode appearing at the relatively higher Reynolds numbers is attributed to the far wake
instability. The eigenfunctions show similar spatial structures as the primary oscillatory mode with
more significant in-plane perturbation. The stationary mode is relevant to the growth of perturbation
in the recirculation bubbles and is much weaker than the two oscillatory modes.

The existence of the stationary mode relevant to the recirculation bubble is dependent on the
flow configuration and other parameters. Such a mode is also observed by Kitsios et al.'> for an
ellipse and a NACAOO15 airfoil at Re = 200 and 8 = 1. The underlying instability mechanism is
complicated and has been discussed in many studies. In contrast to the Kelvin-Helmholtz mech-
anism, Theofilis er al.° discovered the existence of the self-excited three-dimensional instability
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FIG. 13. Eigenfunctions of the primary oscillatory mode 1 =(0.1877,2.6927) at Re =400 and B = 1: (a) Re(i1); (b) Re(d);
(¢) Re(@); (d) Re(p).
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(d) Re(p).

mode in the laminar separation bubble (LSB) formed on a flat plate. The structure of the LSB
was later examined by Rodriguez and Theofilis.’! The recirculation bubble may possibly act as an
amplifier for environment disturbances, or as an oscillator to sustain the instability waves propa-
gated into it.>> For the present airfoil at a high angle of attack, it is shown in Figures 5 and 6
that the recirculation bubbles elongate in the streamwise direction so that the base flow induces
significant strain in the wake. The recirculating flow is distinctly different from the LSB on the flat
plate which is spatially restricted within a small region. The stationary mode is resulted from the
centrifugal instability through which the nominally two-dimensional recirculating flow is unstable
to three-dimensional perturbation and results in a discrete unstable eigenmode, as observed in a
number of different geometries with a two-dimensional recirculation bubble.'>?*3 The centrifugal
instability is found to emerge with sufficiently strong reverse flow. For the LSB on a flat plate,
Alam and Sandham®* concluded, from examining three-dimensional DNS, that a maximum reverse
flow velocity u,.,/Uy = 8% leads to the onset of unsteadiness. A similar value of 7% is found by
Rodriguez et al.>> where the effect of the Reynolds number is limited. For the present flow config-
uration, the recirculating wake flow is free of the bounded wall, and the stationary mode stemming
from the centrifugal instability is only observed at Re = 800 and 1000 where u,.,/Uy >~ 20% at the
spanwise wavenumber 8 = 1, as shown in Figure 6.

The effect of the spanwise wavenumber on the stability characteristics at Re = 1000 is shown in
Figure 18: there are three unstable modes at 8 = 1 and 2. As the wavenumber increases, the oscil-
latory modes first diminish and then the stationary mode is suppressed, resulting in one stationary
mode at 8 =4 and no unstable mode at 8 = 8. The spatial structures of the eigenfunction Re(i)
at B =2 and B =4 are, respectively, shown in Figures 19 and 20. The eigenfunctions of various
unstable modes have similar spatial structure as those of 8 = 1, while their magnitude decreases
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FIG. 18. Eigenvalue spectra at Re = 1000.
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FIG. 20. Eigenfunction of Re(i2) at Re = 1000 and B = 4 for the stationary mode A = (0.0633,0.0000).
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FIG. 21. The effect of the spanwise wavenumber on the eigenvalue of the most-unstable/least-stable mode. The spanwise
wavenumber is 8 = 1-10 with AB = 1.

with the wavenumber. A minor difference observed for the secondary oscillatory mode at 8 = 2 is
that the perturbation is only significant in the very far wake region.

The variation of the most-unstable/least-stable eigenvalue with respect to the spanwise wavenum-
ber is shown in Figure 21. A complete summary for the variations of various unstable modes with
the spanwise wavenumber and Reynolds number is given in Appendix B. One consistent conclusion
drawn is that the growth rate of the most-unstable mode decreases with the spanwise wavenumber and
eventually transitions to stable beyond a critical value. The critical value is computed approximately
using the bisection technique based on the criterion that neutral stability is reached when the real
part of the most-unstable/least-stable eigenvalue is zero. We continue the bisection iterations until
|[Re(1)| is smaller than 0.01. The critical spanwise wavenumbers are approximately 2.42, 3.47, 4.29
and 4.42 for the Reynolds number 400, 600, 800, and 1000, respectively. The neutral-stable mode is
quasi-stationary with negligibly small Im(2).

IV. CONCLUSION

We perform BiGlobal linear stability analysis on flow past a NACAOQ012 airfoil at 16° angle
of attack and Reynolds number from 400 to 1000. The stability analysis is conducted under the
small spanwise wavenumber 8 = 10~* for the approximation of two-dimensional perturbation with
long spanwise wavelength, and medium and large spanwise wavenumbers for the three-dimensional
perturbation with short spanwise wavelength. The two-dimensional steady base flows are computed
by our finite difference solver using the selective frequency damping method. The base flow com-
prises of two asymmetric recirculation bubbles downstream of the airfoil, and their sizes in the
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streamwise direction and the maximum reverse flow velocity notably grow with the Reynolds
number.

At the small spanwise wavenumber, there are strong oscillatory unstable modes at all Reynolds
numbers investigated. There is one oscillatory mode for Re = 400 and 600 which is associated to
the wake instability. At Re = 800 and 1000, two oscillatory modes appear with nearly the same
frequency, i.e., the primary oscillatory mode with larger growth rate for the near wake insta-
bility, and the secondary oscillatory mode for the far wake instability. The perturbations in the
cross-sectional plane (i, 0) dominate the spanwise component as the Reynolds number increases,
reflecting a significant two-dimensionally growing pattern. In order to assess the validity of the
two-dimensional approximation at the present small spanwise wavenumber, direct simulations are
carried out initialized by the base flow, with or without the superimposed perturbation from the pri-
mary oscillatory mode. The direct simulation well reproduces the exponential growth of the pertur-
bation at all Reynolds numbers. The growth rate and frequency of the primary oscillatory (most
unstable) mode predicted by the direct simulation and BiGlobal stability analysis are consistent with
each other, which validates the code and the two-dimensional approximation.

For the medium spanwise wavenumber 5 = 1, there is one oscillatory wake mode for Re = 400
and 600 and two for Re = 800 and 1000, similarly to the 8 = 10~* case. The wake mode is
two-dimensionally dominated. As the Reynolds number increases, the domination is more pro-
nounced, and the eigenfunctions representing the perturbation are getting to be significant within
a smaller region close to the airfoil. A stationary mode is observed for Re = 800 and 1000 corre-
sponding to the monotonically growing perturbation without phase angle variation (Re(4) > 0 and
Im(2) = 0). The stationary mode appears as a result of the centrifugal instability of the recirculation
bubble as long as the reverse flow is strong enough at higher Reynolds numbers, which is about
urev/ Uy = 20% for the present flow configuration where u,,, is the maximum reverse flow velocity.
Both the oscillatory and stationary modes are suppressed as the spanwise wavenumber increases; the
oscillatory mode first diminishes while the stationary mode still exists till 8 = 4. The critical spanwise
wavenumbers for the stabilization of the flow at different Reynolds number are also presented.
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APPENDIX A: CODE VERIFICATION VIA POISEUILLE FLOW IN A DUCT

The numerical method and code are verified through the duct Poiseuille flow problem. Consid-
ering a rectangular duct defined in the domain (x, y) € [-A,A] X [—1,1] with A the aspect ratio, the
fluid is moving in the z-direction driven by the constant streamwise pressure gradient. The base flow
is independent of the z-coordinate and possesses a vector (0,0, w). The w-velocity satisfies a Poisson
equation derived by simplifying the Navier-Stokes equations and has a two-dimensional parabolic
profile as a series solution,’®

2)32"’1 (=1)" cosh[(2n + 1)rx/2]cos[(2n + Dy /2]
(

— —_1_,2_ -
oy =1-y 4(” & (2n +1)° cosh[(2n + 1)mA/2] “y

The velocity vector (0,0, w) computed from Eq. (A1) serves as the base flow solution. The Reynolds
number is defined based on the half-duct depth and the w-velocity at the center of the duct (the
maximum value). In this case, the base flow is varying in the x-y plane but is uniform for the base
flow and periodic for the perturbations in the streamwise (z-) direction. The governing equations for
the perturbations are thus different from Egs. (11)-(14) and are written as follows:

Ay + 0, +ipd =0, (A2)
Adi + 1w = P/ p + (i + i1, — B40)/Re, (A3)
AD +iBWH = —py/p + (byx + D,y — B20)/Re, (Ad)

i,
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FIG. 22. Eigenvalue spectra of the least-stable modes of the duct Poiseuille flow obtained under various resolutions at
Re=100and B =1.

~iBp/p+ (Dxx + yy ~ B7)/Re. (AS)
We perform the BiGlobal stability analysis on this duct Poiseuille flow with parameters Re = 100,
B =1,and A = 1 and 2 to be consistent with the works by Theofilis e al.*’ and Merzari et al.’ A
uniform mesh is used for this verification, with the spatial resolution ranging from 322 to 256 for the
square duct (A = 1), and from 64 x 32 to 512 x 256 for the rectangular one (A = 2). The eigenvalue
spectra for the plane Poiseuille flow (PPF) at Re = 100 is computed by solving the Orr-Sommerfeld
equation corresponding to the extreme case A — co. The eigenvalue spectra computed under various
resolutions are shown in Figure 22. At the present Reynolds number and spanwise wavenumber, the
flow is stable to three-dimensional perturbations and all eigenvalues lie to the left of the imaginary
axis. The distributions of the eigenvalues are in agreement with those obtained by Theofilis et al.*’
who utilized a Legendre collocation method on a 64 X 32 grid. For both ducts of different aspect
ratios, the low resolution mesh is not capable to reproduce the grid-independent result towards the
most-stable regime (Re(d) — —co) in that the eigenvalues are generally shifting along the real axis.
As the resolution increases, the scattering gradually reduces so that the computed eigenvalues overlap
in the eye-norm, and these results are in good agreement with those in Theofilis et al.*° It is also noted
here that the least-stable eigenvalues (Re(1) — 0) are well predicted under various grid resolutions,
and it is precisely that these modes, together with the unstable modes, are important and interested
in our work. As the aspect ratio increases from A = 1 to A = 2, the eigenvalues of the stable modes
move towards the P-branch of the PPF case at Im(1) = —2/3. For higher Reynolds numbers and/or
larger aspect ratios, it is computationally expensive to reproduce even part of the stable eigenvalue
spectrum since a large mesh has to be employed to properly capture the velocity gradient in the
thinning boundary layer. Based on the above result, we believe that the present numerical method
and code are reliable for the stability analysis of flow past an airfoil.

AW +ifwb + dwy + dw, =

APPENDIX B: EFFECT OF REYNOLDS NUMBER AND SPANWISE WAVENUMBER
ON THE UNSTABLE MODES

Table II lists the variation of the eigenvalue of the three possible unstable modes (primary oscil-
latory, secondary oscillatory and stationary) with the Reynolds number and spanwise wavenumber.
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TABLE 1II. Variations of the growth rate and frequency of the unsta-
ble modes (Re(), Im(2)) with the Reynolds number and spanwise

wavenumber.
B Re =400 600 800 1000
Primary oscillatory mode
1 (0.1877,2.6927) (0.4396,2.6543) (0.5644,2.5403) (0.6239,2.4013)
2 (0.0682,2.6372) (0.3086,2.5979) (0.4231,2.4814) (0.4739,2.3392)
3 .. (0.1109, 2.5066) (0.2116,2.3843) (0.2503, 2.2368)
Secondary oscillatory mode
1 (0.1124,2.7639) (0.2393, 2.6479)
2 (0.0767, 2.5955)
Stationary mode
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