Hellow,

| found two flaws.

1. Four Lagrangian interpolation functions in namespace Polylib may have significant
errors when evaluation near interpolation points. This problem affects
interpolation operations’ accuracy.

These four functions are the follows:

double hgj (const int i, const double z, const double *zgj, const int np, const double
alpha, const double beta),

double hgrjm (const int i, const double z, const double *zgrj, const int np, const
double alpha, const double beta),

double hgrjp (const int i, const double z, const double *zgrj, const int np, const
double alpha, const double beta),

double hglj (const int i, const double z, const double *zglj, const int np, const
double alpha, const double beta).

The reason of this problems is this. These four functions using formulas like this
one
{1 _ zz}Pu—]éJ'i—l{:J

o patLA+l AT if 2 # z
hJ(z} = [(1 - ;j)[j,:“’_‘j (:'-ii)]F - 22J'Pnp—'.i (2.1;)}(:' - z.ii)

1 if 2=z

used in hglj. To judge whether z equals zj, a parameter EPS= 100*DBL_EPSILON is
adopted as a threshold, and EPS = 2.E-14. Problem happens when z is very close to
zj but their distance is still greater than EPS, since at this situation the formula in
hj contains subtraction of two very close (double) float numbers, which causes
heavy loss of accuracy.

One example is in Gauss Lobatto interpolation function hglj with n=12, | evaluate
its value at point —0.81927932164452633, which differs from the third zero
—0.81927932164400674 by 5E-13>EPS. Function hglj gives the value
1.00015479671952878, of which the error is 1E-4.

| use a new parameter EPSERR=3E-3 as threshold specially for these four functions
to judge whether z is close to zj enough, and if abs(z-zj)<EPSERR, | adopt a

Z—Zm

to evaluate its

traditional Lagrange interpolation function h;(z) = [Josm<n
) mzj Zj7Zm

value. This gives a very good overall accuracy.

2. In function Nektar::FieldUtils::InputXml::Process ,the “if” statement at line 356
version 4.4.0. | think it should be this if(m_requireEquiSpaced) but not
if(m_requireEquiSpaced | | vm.count("output-points")). Since in the current codes,
when --output-points and --noequispaced options are used simultaneously, the —
equispaced option will not work.

And still, 1 have a question. In function Nektar::Extrapolate::AccelerationBDF
when solving incompressible Navier-Stokes equation using higher order Neumann
pressure boundary condition, why should the backward differentiation formula start
after m_pressureCalls > 2? since when m_pressureCalls=2, we can already obtain a

. a . .
first order accuracy value of 6—1:. | changed that number to 1, like the following codes

if (m_pressureCalls > 1)

{

int acc_order = min(m_pressureCalls-1,m_intSteps); ...

and it seems nothing goes wrong in my simulation.

Best wishes

Ankang

