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The associated weak form we will be using is the Poisson bracket for the compressible stratified
Euler equations in the computational domain §2;. We let e index for an element and S index for the

trace of an element,
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We consider flow in a domain with solid walls, such that our boundary conditions are uw -1 = 0.
However to preserve skew-symmetry in the Poisson bracket we also require that there is a similar

boundary condition on the test function for the velocity.
By defining the following functionals

Floou) = /Qu(x, t).®(x) dx,
Fo= [ plx.)B(x) dx, @
Fp = /Qp(x,t)E(X) dx,
where ® € M and ®, 2 € N are arbitrary test functions, in the following function spaces

M={®c (L*(Q)* and V.® € L*(Q) : 1.® = 0 at 9Q}, 5
N ={®c L*(0)}. 3)

We see that the boundary condition for the test function can be included in its function space.



