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The associated weak form we will be using is the Poisson bracket for the compressible stratified
Euler equations in the computational domain Ωh. We let e index for an element and S index for the
trace of an element,
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(1)

We consider flow in a domain with solid walls, such that our boundary conditions are u · n̂ = 0.
However to preserve skew-symmetry in the Poisson bracket we also require that there is a similar
boundary condition on the test function for the velocity.

By defining the following functionals

F(ρ0u) =
∫

Ω

u(x, t).Φ(x) dx,

Fρ =
∫
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ρ(x, t)Φ(x) dx,

Fp =
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p(x, t)Ξ(x) dx,

(2)

where Φ ∈ M and Φ, Ξ ∈ N are arbitrary test functions, in the following function spaces

M = {Φ ∈ (L2(Ω))3 and ∇.Φ ∈ L2(Ω) : n̂.Φ = 0 at ∂Ω},
N = {Φ ∈ L2(Ω)}.

(3)

We see that the boundary condition for the test function can be included in its function space.
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