Hamiltonian DGFEM for compressible stratified Euler equations

Will Booker

February 18, 2016

The associated weak form we will be using is the Poisson bracket for the compressible stratified Euler equations in the computational domain Ω_h . We let e index for an element and S index for the trace of an element,

$$\{\mathcal{F},\mathcal{G}\} = \sum_{e \in \Omega_{h}} \int_{e} -\nabla(\rho_{0} \frac{\delta \mathcal{G}}{\delta \rho_{h}}) \cdot \frac{\delta \mathcal{F}}{\delta(\rho_{0} \mathbf{u}_{h})} + \nabla(\rho_{0} \frac{\delta \mathcal{F}}{\delta \rho_{h}}) \cdot \frac{\delta \mathcal{G}}{\delta(\rho_{0} \mathbf{u}_{h})} de
+ \sum_{\partial e \in S} \int_{\partial e} (\rho_{0}^{-} \frac{\delta \mathcal{G}}{\delta \rho_{h}^{-}} - \rho_{0}^{+} \frac{\delta \mathcal{G}}{\delta \rho_{h}^{+}}) \hat{\underline{n}}^{-} \cdot \left[(1 - \theta) \frac{\delta \mathcal{F}}{\delta \rho_{0} \mathbf{u}_{h}^{-}} + \theta \frac{\delta \mathcal{F}}{\delta \rho_{0} \mathbf{u}_{h}^{+}} \right]
- (\rho_{0}^{-} \frac{\delta \mathcal{F}}{\delta \rho_{h}^{-}} - \rho_{0}^{+} \frac{\delta \mathcal{F}}{\delta \rho_{h}^{+}}) \hat{\underline{n}}^{-} \cdot \left[(1 - \theta) \frac{\delta \mathcal{G}}{\delta \rho_{0} \mathbf{u}_{h}^{-}} + \theta \frac{\delta \mathcal{G}}{\delta \rho_{0} \mathbf{u}_{h}^{+}} \right] dS
+ \sum_{e \in \Omega_{h}} \int_{e} \frac{d\rho_{0}}{dz} \left(\frac{\delta \mathcal{G}}{\delta \rho_{h}} \frac{\delta \mathcal{F}}{\delta \rho_{0} w_{h}} - \frac{\delta \mathcal{F}}{\delta \rho_{h}} \frac{\delta \mathcal{G}}{\delta \rho_{0} w_{h}} \right) de
+ \sum_{e \in \Omega_{h}} \int_{e} \rho_{0} g \left(\frac{\delta \mathcal{F}}{\delta p_{h}} \frac{\delta \mathcal{G}}{\delta \rho_{0} w_{h}} - \frac{\delta \mathcal{F}}{\delta p_{h}} \frac{\delta \mathcal{F}}{\delta \rho_{0} w_{h}} \right) de
+ \sum_{e \in \Omega_{h}} \int_{e} -\nabla (c_{0}^{2} \rho_{0} \frac{\delta \mathcal{G}}{\delta p_{h}}) \cdot \frac{\delta \mathcal{F}}{\delta \mathbf{u}_{h}} + \nabla (c_{0}^{2} \rho_{0} \frac{\delta \mathcal{F}}{\delta p_{h}}) \cdot \frac{\delta \mathcal{G}}{\delta \mathbf{u}_{h}} de
+ \sum_{e \in S} \int_{\partial e} (c_{0}^{2^{-}} \rho_{0}^{-} \frac{\delta \mathcal{G}}{\delta p_{h}^{-}} - c_{0}^{2^{+}} \rho_{0}^{+} \frac{\delta \mathcal{F}}{\delta p_{h}^{+}}) \hat{\underline{n}} \cdot \left[(1 - \theta) \frac{\delta \mathcal{F}}{\delta \rho_{0} \mathbf{u}_{h}^{-}} + \theta \frac{\delta \mathcal{F}}{\delta \rho_{0} \mathbf{u}_{h}^{+}} \right]
- (c_{0}^{2^{-}} \rho_{0}^{-} \frac{\delta \mathcal{F}}{\delta p_{h}^{-}} - c_{0}^{2^{+}} \rho_{0}^{+} \frac{\delta \mathcal{F}}{\delta p_{h}^{+}}) \hat{\underline{n}} \cdot \left[(1 - \theta) \frac{\delta \mathcal{G}}{\delta \rho_{0} \mathbf{u}_{h}^{-}} + \theta \frac{\delta \mathcal{G}}{\delta \rho_{0} \mathbf{u}_{h}^{+}} \right] dS.$$

We consider flow in a domain with solid walls, such that our boundary conditions are $\underline{u} \cdot \hat{\underline{n}} = 0$. However to preserve skew-symmetry in the Poisson bracket we also require that there is a similar boundary condition on the test function for the velocity.

By defining the following functionals

$$\mathcal{F}_{(\rho_0 \mathbf{u})} = \int_{\Omega} \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{\Phi}(\mathbf{x}) \, d\mathbf{x},$$

$$\mathcal{F}_{\rho} = \int_{\Omega} \rho(\mathbf{x}, t) \Phi(\mathbf{x}) \, d\mathbf{x},$$

$$\mathcal{F}_{p} = \int_{\Omega} p(\mathbf{x}, t) \Xi(\mathbf{x}) \, d\mathbf{x},$$
(2)

where $\Phi \in \mathcal{M}$ and $\Phi, \Xi \in \mathcal{N}$ are arbitrary test functions, in the following function spaces

$$\mathcal{M} = \{ \mathbf{\Phi} \in (L^2(\Omega))^3 \text{ and } \nabla \cdot \mathbf{\Phi} \in L^2(\Omega) : \hat{\mathbf{n}} \cdot \mathbf{\Phi} = 0 \text{ at } \partial \Omega \},$$

$$\mathcal{N} = \{ \mathbf{\Phi} \in L^2(\Omega) \}.$$
(3)

We see that the boundary condition for the test function can be included in its function space.