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Local assembly is the characteristic operation of the finite element method, which entails
the numerical evaluation of a problem-specific integral for each element in the discretized
equation domain. Since the domain size can be huge, efficient computation of such integrals
is fundamental. Many approaches are possible: in addition to the conventional quadrature
representation, the introduction of DSLs and the adoption of run-time code generation has
led to novel methods based on tensor contraction [1] and symbolic manipulation [2]. It has
been demonstrated, however, that quadrature representation remains the optimal choice
for a wide class of problems [3].

Low-level optimization of routines based on quadrature representation is, in general,
a challenging issue. Even though an affine, typically non-perfect loop nest is generally
present, the short trip counts and the complexity of mathematical expressions make it hard
to determine a single or unique sequence of successful transformations. In this context,
we present the design and systematic evaluation of COFFEE1, a domain-specific compiler
for local assembly integrated with the FEniCS-compatible system Firedrake. COFFEE
manipulates abstract syntax trees produced by a modified version of the FEniCS Form
Compiler (FFC), introducing composable optimizations aimed at improving instruction-
level parallelism, especially SIMD vectorization, and register locality. It then generates
C code including vector intrinsics. Experiments using a range of finite-element forms of
increasing complexity show that significant performance improvement over FFC-optimized
problems is achieved.

In this talk, we also mention two optimizations, which are currently under development
in COFFEE, that are of general interest for the FEniCS community: inter-kernel vector-
ization and generation of specialised code for small linear algebra operations. The former
enables SIMD vectorization in problems in which the amount of loop-invariant code, in-
herently unstructured, represents the bulk of the computation, for example those based on
hyperelasticity; the latter centers on transforming the quadrature code into a sequence of
calls to optimized BLAS routines.

1COFFEE stands for COmpiler For FinitE Element local assembly
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