
COFFEE: an Optimizing Compiler for

Finite Element Local Assembly

Fabio Luporini2, Paul H. J. Kelly2, and David A. Ham1,2

1Department of Mathematics, Imperial College London
2Department of Computing, Imperial College London

Local assembly is the characteristic operation of the finite element method, which entails
the numerical evaluation of a problem-specific integral for each element in the discretized
equation domain. Since the domain size can be huge, efficient computation of such integrals
is fundamental. Many approaches are possible: in addition to the conventional quadrature
representation, the introduction of DSLs and the adoption of run-time code generation has
led to novel methods based on tensor contraction [1] and symbolic manipulation [2]. It has
been demonstrated, however, that quadrature representation remains the optimal choice
for a wide class of problems [3].

Low-level optimization of routines based on quadrature representation is, in general,
a challenging issue. Even though an affine, typically non-perfect loop nest is generally
present, the short trip counts and the complexity of mathematical expressions make it hard
to determine a single or unique sequence of successful transformations. In this context,
we present the design and systematic evaluation of COFFEE1, a domain-specific compiler
for local assembly integrated with the FEniCS-compatible system Firedrake. COFFEE
manipulates abstract syntax trees produced by a modified version of the FEniCS Form
Compiler (FFC), introducing composable optimizations aimed at improving instruction-
level parallelism, especially SIMD vectorization, and register locality. It then generates
C code including vector intrinsics. Experiments using a range of finite-element forms of
increasing complexity show that significant performance improvement over FFC-optimized
problems is achieved.

In this talk, we also mention two optimizations, which are currently under development
in COFFEE, that are of general interest for the FEniCS community: inter-kernel vector-
ization and generation of specialised code for small linear algebra operations. The former
enables SIMD vectorization in problems in which the amount of loop-invariant code, in-
herently unstructured, represents the bulk of the computation, for example those based on
hyperelasticity; the latter centers on transforming the quadrature code into a sequence of
calls to optimized BLAS routines.

1COFFEE stands for COmpiler For FinitE Element local assembly

1



References

[1] Robert C. Kirby and Anders Logg. A compiler for variational forms. ACM Trans.
Math. Softw., 32(3):417–444, September 2006.

[2] Francis P. Russell and Paul H. J. Kelly. Optimized code generation for finite element
local assembly using symbolic manipulation. ACM Transactions on Mathematical Soft-
ware, 39(4).

[3] Kristian B. Olgaard and Garth N. Wells. Optimizations for quadrature representations
of finite element tensors through automated code generation. ACM Trans. Math.
Softw., 37(1):8:1–8:23, January 2010.

2


