
Firedrake: a multilevel domain specific
language approach to unstructured mesh

stencil computations

Lawrence Mitchell, Gheorghe-Teodor Bercea, David Ham,
Paul Kelly, Nicolas Loriant, Fabio Luporini, Florian

Rathgeber

Departments of Mathematics and Computing, Imperial College London

21 February 2014

1



Introduction

Maintaining abstractions

Exploiting structure

Benchmarking

Conclusions

2



What are we interested in?

I (Predominantly) finite element simulations
I primary application areas in geophysical fluids (ocean and

atmosphere)
I simulations on unstructured and semi-structured meshes

I Providing high-level interfaces for users, with performance

I the moon, on a stick
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How does FE fit a stencils session?

I Numerics tell us the elementary operation we apply
everywhere in the mesh (a "kernel")

I Mesh topology gives us the "stencil" pattern
I Our job: efficiently apply the kernel over the whole mesh
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Express what, not how

I User code should make as few decisions about
implementation as possible

I FE discretisations expressed symbolically using the Unified
Form Language

I developed in the FEniCS project
(http://www.fenicsproject.org)

I symbolic representation compiled to a C kernel
I Data to feed to kernel (and interface to solvers) provided

by Firedrake (http://www.firedrakeproject.org)
I Execution of kernel over entire domain expressed as

parallel loop with access descriptors
I uses PyOP2 unstructured mesh library

(http://github.com/OP2/PyOP2)
I implementation of loop taken out of user hands
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PyOP2

I A python library for unstructured mesh computations
I http://github.com/OP2/PyOP2
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PyOP2 data model

I Data types
Set e.g. cells, degrees of freedom (dofs)
Dat data defined on a Set (one entry per set

element)
Map a mapping between two sets (e.g. cells to

dofs), a "stencil"
Global global data (one entry)
Kernel a piece of code to execute over the mesh (in

C)
I access descriptors

I READ, RW, WRITE, INC
I iteration construct

par_loop execute a Kernel over every element in a Set

9



Example

elements = Set(...)
nodes = Set(...)
elem_node = Map(elements, nodes, 3, ...) # 3 nodes per element
node_data = Dat(nodes, ...)
element_data = Dat(elements, ...)
count = Global(...) # no set (global value)
par_loop(kernel, elements,

element_data(READ), # direct read
node_data(INC, elem_node), # indirect increment
count(INC)) # global increment

I executes kernel for each ele in elements
I runtime knows it has to care about data dependencies for

I increments into node_data
I increment into count
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Synthesis, not analysis

I Access descriptors on parallel loops mean:
I code generation requires synthesis, not analysis
I determination of when halo exchanges need to occur is

automatic
I colouring for shared memory parallelisation can be

computed automatically
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Semi-structured meshes

I Many application areas have a "short" direction
I ocean and atmosphere
I thin shells

I Numerics dictate we should do something different in
short direction

I Use semi-structured meshes
I unstructured in "long" directions, structured in short
I can we exploit this structure?
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A picture of triangles

⊗ = →
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Admits a fast implementation

I Exploit structure in mesh to
amortize indirect lookups

I arrange for iteration over
short direction to be
innermost loop

I pay one indirect lookup per
mesh column

I walk up column directly

⊗ = →
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A bandwidth bound test case

I Walk over mesh, read from vertices and cells, sum into
global

void kernel(double *a, double *x[], double *y[]) {
const double area = fabs(x[0][0]*(x[2][1]-x[4][1])

+ x[2][0]*(x[4][1]-x[0][1])
+ x[4][0]*(x[0][1]-x[2][1]));

*a += area * 0.5 * y[0][0];
}

I Can we sustain an appreciable fraction of memory
bandwidth?
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Measuring throughput

I "Effective" data volume
I assume every piece of data is touched exactly once (in

perfect order)
I don’t count data movement for indirection maps
I effectively, just count the volume of degrees of freedom

touched
I "Valuable" bandwidth

I effective data volume per second
I Actual memory bandwidth will be higher (reading

indirection maps)
I but this is not "useful"
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Benchmark setup

I 2D unstructured mesh: 806110 cells, 403811 vertices.
I 2D coordinate field located at vertices (implicit 3rd

coordinate)
I scalar field stored at cell centres

I Run with increasing number of extruded cell layers (nlayer)
I data volume (806110 * nlayer) + 403811 * 2 (nlayer + 1)

doubles
I 1 layer: 18.4MB
I 200 layers: 2468MB

I Execute kernel over mesh 100 times
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Single node

I Intel Sandybridge 4 cores (2 way hyperthreading)
I 32kB L1 cache (per core)
I 256 kB L2 cache (per core)
I 8 MB L3 cache (shared)

I Measured STREAM bandwidth (8 threads)
I 11341 MB/s
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Effect of good base numbering

I Being completely unstructured hurts a lot
I Compare default (mesh generator) numbering with

renumbered mesh using 2D space filling curve
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Adding layers amortizes indirection cost

I L3 cache bandwidth
I low layer numbers hit the L3 more often (indirection

lookups)
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Valuable bandwidth

I Above ~20 layers, indirection cost "hidden"
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More threads

I Hyperthreading gives some further gains (82% STREAM
bandwidth)
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Possible to be unstructured and fast

I A good numbering gets you a reasonable way there
I If there is structure in your problem, use it!
I High level abstractions need not kill performance
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