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1 Continuum Description

In this report we will consider in a compressible fluid in a one-dimensional domain €2 . We
will assume that viscous effects and temperature effects do not influence the motion of the
fluid. We assume acoustic speed of sound c% have been scaled such that c% =1, and that the
equations of motions have been linearised around a state of rest. We assume py = e 3%. This
leads to the linear compressible stratified Euler equations

Apow) _ 9p
ot 0z’
1
9 o o) .
ot po 0z

where N2 = plo dp - We will consider in this report and we will take that JQ are taken to be
solid walls, such that there is no normal flow through them.
Hamiltonian dynamics of compressible fluid flow governed by equations (1) is given by
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with its associated Hamiltonian energy functional

dz, (2)
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By using equation (?7) we can show that the variational derivatives for our associated Hamil-
tonian are
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2 Discrete Description

We now approximate the physical domain 2 with the computational domain §2;, which consists
of e non-overlapping elements. The set of all edges in the computational domain is I', which
consists of interior edges, de and edges which lie on the domain boundary 9. We introduce
discrete variable p;, and up, which are approximations to their continuous counterparts. The
Poisson bracket (2) now becomes discrete
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We integrate the Poisson bracket by parts and introduce a numerical flux to create a
connection between neighbouring elements,
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Wide hats on expressions in the boundary integrals indicate terms which will be approximated
by numerical fluxes. The following numerical fluxes are chosen to approximate wide hat terms
where — and + indicate traces from the left and right elements connected to the face
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we will emphasis here that this choice of numerical flux was made to preserve the skew-
symmetry of the Poisson bracket. We note that by summing these interior boundary integrals
over each element, they contribute twice to the Poisson bracket. Thus the contribution over

each element can be rewritten to a summation over each interior boundary. We also now split
contributions from I' into contributions from interior edges and boundary edges
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At our boundary edges we have solid wall boundaries and thus we have that
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However to to preserve the skew symmetry of the bracket, we also require the flux on the test

function 5“2 to vanish at these boundaries. Thus in our Poisson bracket we only have surface

integral contributions from interior edges, and none from boundary edges. This simplifies the
Poisson bracket to
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The bracket (7) is the Poisson bracket used for the Firedrake implementation. To simplify
the repeated parts of the bracket in our implementation we introduce a discrete operator
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The Poisson bracket simplifies to
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3 Firedrake Implementation

Taking variations of the previous bracket results in the following discrete system
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To solve the above system, we must relate the physical variables to their variational deriva-
tives.
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We note that the discrete variational derivatives are only related to the physical variables in
a weak sense, as for instance 2 ’;” does not belong to the same finite element space. The initial

variational derivatives are calculated with a projection of the initial condition, future values
at time t = n + 1 are found by augmenting the above discrete system:
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4 Timestepper

4.1 Implicit Midpoint rule

An implicit midpoint rule is used, as it is a known property that the scheme preserves any
property of the underlying ODE upto a quadratic order. This will be sufficient for our scheme
to preserve its conservation of energy.
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