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1 Nonlinear dynamics

The actual buoy resides at z = hb(x, Z(t)) above the bottom in a certain horizontal interval from xp(t) <
x < L with xp the edge of the buoy at the water surface. A simple V-shaped buoy has the form

hb(x, Z(t)) = Z(t)−H − tanα(x− L), (1)

where Z −H is the position of the keel. We artificially extend this buoy function hb smoothly into the
entire domain for all 0 < x < L. The water line point at xp is implicitly defined by h(xp, t) = hb(xp, Z).

The constrained variational principle is

0 =δ
∫ T

0

∫ L

0

−ρh∂tφ−
1
2
ρh(∂xφ)2 − 1

2
ρgh2 − ρghH0 + ρλ(h− hb + µ2) dx

−MZẆ − 1
2
MW 2 −MgZ dt (2a)

=
∫ T

0

∫ L

0

−ρδh
(
∂tφ+

1
2

(∂xφ)2 + g(h−H0)− λ
)
− ρ
(
h∂t(δφ) +H(x)∂xφ∂x(δφ)

)
+ ρδλ(h− hb + µ2) + 2ρλµδµdx

− δZ
(
MẆ +Mg + ρ

∫ L

0

λ dx
)
−MZδẆ −MWδW dt (2b)

=
∫ T

0

∫ L

0

−ρδh
(
∂tφ+

1
2

(∂xφ)2 + g(h−H0)− λ
)

+ ρδφ
(
∂th+ ∂x(H(x)∂xφ)

)
+ ρδλ(h− hb + µ2) + 2ρλµ δµdx

− δZ
(
MẆ +Mg + ρ

∫ L

0

λ dx
)

+MδW (Ż −W ) dt. (2c)

The resulting equations of motion are:

δh : ∂tφ+
1
2

(∂xφ)2 + g(h−H0)− λ = 0 (3a)

δφ : ∂th+ ∂x(h∂xφ) = 0 (3b)

δλ : h− hb + µ2 = 0 (3c)
δµ : λµ = 0 (3d)

δZ : MẆ +Mg + ρ

∫ L

0

λ dx = 0 (3e)

δW : Ż = W. (3f)

The variation δµ yields that λµ = 0 so either:

• λ = 0 and µ2 > 0 in the part of the domain where hb − h = µ2 > 0, or

• µ = 0 with λ 6= 0 in the part of the domain under the buoy where h = hb.

So by introducing the constraint h− hb + µ2 = 0 with global Lagrange multiplier λ we have imposed the
non-negative nature of hb−h both as inequality as well as an equality. (Reference found online regarding
control theory.)
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2 Steady State

The steady state system at rest is φ = 0, W = 0, Z = Z̄ and h = H(x), hb = Hb(x, Z̄), λ = Λ(x),
µ = µ̄(x) satisfying

g(h−H0)− λ =0 (4a)

h− hb(x, Z̄) + µ2 =0 (4b)
λµ =0 (4c)

Mg + ρ

∫ L

0

λ dx =0, (4d)

which holds for a reference height Z̄ such that the displaced water of the buoy equals its mass M . This
also defines the waterline point at x = xp = Lp. In steady state the solution then becomes

0 < x < Lp : H(x) = H0, Λ(x) = 0, µ̄(x) =
√
Hb(x, Z̄)−H0, (5a)

Lp ≤ x < L : h = Hb(x, Z̄), µ̄(x) = 0, Λ(x) = g(Hb(x, Z̄)−H0), (5b)

in which we extended Hb(x) artificially for x < Lp to equal its value at Lp.

3 Linearisation

The following linearization is applied to the variational principle after we substitute

φ =φ, h = H(x) + η, hb(x, Z) = Hb(x, Z̄) + ηb = Hb(x, Z̄) + Z̃, (6a)

λ =Λ(x) + λ̃, µ = µ̄(x) + µ̃, W = W, Z = Z̄ + Z̃ (6b)

into (26a), in which constant terms can be discarded, terms linear in the perturbation variables cancel
after using the steady state solution, and in which only quadratic terms in the variations are kept. Hence,
we find the following variational principle for the linearized equations of motion

0 =δ
∫ T

0

∫ L

0

−ρη∂tφ−
1
2
ρH(x)(∂xφ)2 − 1

2
ρgη2 + ρλ̃(η − Z̃ + 2µ̄µ̃) + ρΛµ̃2 dx

−MZ̃Ẇ − 1
2
MW 2 dt (7)

=
∫ T

0

∫ L

0

−ρδη(∂tφ+ gη − λ̃)− ρ
(
η∂t(δφ) +H(x)∂xφ∂x(δφ)

)
+ ρδλ̃(η − Z̃ + 2µ̄µ̃) + 2ρδµ̃(Λµ̃+ µ̄λ̃) dx

− δZ̃
(
MẆ +

∫ L

0

λ̃ dx
)

+MδW
( ˙̃Z −W

)
dt (8)

after using the end-point conditions on δφ and δW . These variations lead to the equations of motion

δη : ∂tφ+ gη − λ̃ = 0 (9a)

δφ : ∂tη + ∂x
(
H(x)∂xφ

)
= 0 (9b)

δZ : MẆ + ρ

∫ L

0

λ̃ dx = 0 (9c)

δW : Ż = W, (9d)

including

δλ̃ : η − Z̃ + 2µ̄µ̃ = 0 (9e)

δµ̃ : µ̄λ̃+ Λµ̃ = 0. (9f)

Since Λ = 0 for 0 < x < Lp while µ̄ > 0, it follows from (9f) that λ̃ = 0 on that interval with a free
surface. Likewise, since µ̄ = 0 while Λ 6= 0 for Lp ≤ x < L, it follows from (9f) that µ̃ = 0 on that interval
under the buoy.
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4 Numerical Implementation

4.1 Galerkin space-time discretisation

Substitute C0 finite element Galerkin expansions

h(x, t) ≈hh(x, t) = hm(t)ϕm(x), φ(x, t) ≈ φh(x, t) = φk(t)ϕk(x), (10)
λ(x, t) ≈λh(x, t) = λl(t)ϕl(x), µ(x, t) ≈ µh(x, t) = µl(t)ϕl(x), (11)

for h, φ, λ and µ into the variational principle yields

0 =δ
∫ T

0

−ρMklηkφ̇l −
1
2
ρAklφkφl −

1
2
ρgMklηkηl

+ ρ
(
Mklλ̃lηk −Qlλ̃lZ̃ + 2Bklλ̃lµ̃k + Cklµ̃lµ̃k

)
−MZ̃Ẇ − 1

2
MW 2 dt, (12)

with matrices

Mkl =
∫ L

0

ϕkϕl dx, Akl =
∫ L

0

H(x)∂xϕk∂xϕl dx,

Bkl =
∫ L

0

µ̄(x)ϕkϕl dx, Ckl =
∫ L

0

Λ(x)ϕkϕl dx. (13)

Define N time slabs [tn, tn + ∆tn] for n = 0, . . . , N . The variational principle with constant ∆tn = T/N
becomes

0 =δ
N−1∑
n=0

−ρMkl(η
n+1,−
k + ηn,+k )(φn+1/2

l − φn,+l )−M(Z̃n+1,− + Z̃n,+)(Wn+1/2 −Wn,+)

− 1
2

∆tρ
(
Aklφ

n+1/2
k φ

n+1/2
l + gMkl

1
2

(ηn+1,−
k ηn+1,−

l + ηn,+k ηn,+l )
)

− 1
2

∆tM(Wn+1/2)2 + ∆tρCklµ̃
n+1/2
k µ̃

n+1/2
l

+ ∆tρλ̃n+1/2
l

(
Mkl

1
2

(ηn+1,−
k + ηn,+k )−Ql

1
2

(Z̃n+1,− + Z̃n,+) + 2Bklµ̃
n+1/2
k

)
+ δ

N−1∑
n=−1

−ρMklη
n+1,−
k (φn+1,+

l − 2φn+1/2
l + φn,+l )

−MZ̃n+1,−(Wn+1,+ − 2Wn+1/2 +Wn,+). (14)

The resulting equations of motion are

δηn,+k : Mklφ
n+1/2
l = Mklφ

n,+
l − 1

2
∆t gMklη

n,+
l +

1
2

∆tMklλ̃
n+1/2
l (15a)

δZ̃n,+ : MWn+1/2 = MWn,+ − 1
2
ρ∆tQlλ̃

n+1/2
l (15b)

δφ
n+1/2
l : Mklη

n+1,−
k = Mklη

n,+
k + ∆t Aklφ

n+1/2
k (15c)

δWn+1/2 : Z̃n+1,− = Z̃n,+ + ∆tWn+1/2 (15d)

δµ̃
n+1/2
k : Bklλ̃

n+1/2
l + Cklµ̃

n+1/2
l = 0 (15e)

δλ̃
n+1/2
l : Mklη

n+1,−
k −QlZ̃n+1,− + 2Bklµ̃

n+1/2
k = 0 (15f)

δηn+1,−
k : Mklφ

n+1,+
l = Mklφ

n+1/2
l − 1

2
∆tgMklη

n+1,−
l +

1
2

∆tMklλ̃
n+1/2
l (15g)

δZ̃n+1,− : MWn+1,+ = MWn+1/2 − 1
2
ρ∆tQlλ̃

n+1/2
l (15h)

δWn,+ : Z̃n,− = Z̃n,+ (15i)

δφn,+l : ηn,+k = ηn,−k . (15j)

The right hand side of the constraint equation (15f) is actually equivalent to Mklη
n,+
l −QlZ̃n,+ but this

is zero since it is valid for n = 0, i.e. at t = 0 and all other subsequent times.
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The constraint equations that need to be solved first are the following,

∆t
2
(
Akl +

ρ

M
QkQl

)
λ̃
n+1/2
k +

2
∆t

Bklµ̃
n+1/2
k =

1
∆t

(QlZ̃n −Mklη
n
k ) +QlW

n +Akl
(∆t

2
gηnk − φnk

)
, (16a)

Bklλ̃
n+1/2
l + Cklµ̃

n+1/2
l =0. (16b)

Equivalently, we can define ˜̃
λ
n+1/2
k = ∆t

2 λ̃
n+1/2
k and B̃kl = 2

∆tBkl, in which case the above system can be
written as(

Akl + ρ
MQkQl B̃kl
B̃kl Ckl

)(˜̃
λ
n+1/2
k

µ̃
n+1/2
k

)
=
(

1
∆t (QlZ̃

n −Mklη
n
k ) +QlW

n +Akl
(

∆t
2 gη

n
k − φnk

)
0

)
. (17)

The matrix above is symmetric. Upon solving the above linear system and knowing ˜̃
λ
n+1/2
k , the rest of

the equations can be solved in the following order:

Mklφ
n+1/2
l = Mklφ

n
l −

1
2

∆t gMklη
n
l +Mkl

˜̃
λ
n+1/2
l (18a)

Wn+1/2 = Wn − ρ

M
Ql

˜̃
λ
n+1/2
l (18b)

Mklη
n+1
k = Mklη

n
k + ∆t Aklφ

n+1/2
k (18c)

Z̃n+1 = Z̃n + ∆tWn+1/2 (18d)

Mklφ
n+1
l = Mklφ

n+1/2
l − 1

2
∆t gMklη

n+1
l +Mkl

˜̃
λ
n+1/2
l (18e)

Wn+1 = Wn+1/2 − ρ

M
Ql

˜̃
λ
n+1/2
l . (18f)

Alternative formulation
Alternatively, one can exchange the expansions for φ and η, W and Z̃, as well as λ̃ and µ̃. (Note that in
the original formulation, µ̃ was expanded wrt µ̃n+1,−

k and µ̃n,+k , but these two ended up being the same.
Here we will expand using µ̃n+1/2

k ). The space-time discrete variational principle in this case becomes

0 =δ
N−1∑
n=0

−ρMklη
n+1/2
k (φn+1,−

l − φn,+l )−MZ̃n+1/2(Wn+1,− −Wn,+)

− 1
2

∆tρ
(
Akl

1
2

(φn+1,−
k φn+1,−

l + φn,+k φn,+l ) + gMklη
n+1/2
k η

n+1/2
l

)
− 1

4
∆tM(Wn+1,−Wn+1,− +Wn,+Wn,+) + ∆tρCklµ̃

n+1/2
k µ̃

n+1/2
l

+
1
2

∆tρ(λ̃n+1,−
l + λ̃n,+l )

(
Mklη

n+1/2
k −QlZ̃n+1/2 + 2Bklµ̃

n+1/2
k

)
+ δ

N−1∑
n=−1

−ρMklη
n+1,+
k (φn+1,+

l − φn+1,−
l )−MZ̃n+1,+(Wn+1,+ −Wn+1,−). (19)
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The resulting equations of motion are

δφn,+l : Mklη
n+1/2
k = Mklη

n,+
k +

1
2

∆t Aklφ
n,+
k (20a)

δWn,+ : Z̃n+1/2 = Z̃n,+ +
1
2

∆tWn,+ (20b)

δη
n+1/2
k : Mklφ

n+1,−
l = Mklφ

n,+
l −∆t gMklη

n+1/2
l + ∆tMkl

1
2

(λ̃n+1,−
l + λ̃n,+l ) (20c)

δZ̃n+1/2 : MWn+1,− = MWn,+ − ρ∆tQl
1
2

(λ̃n+1,−
l + λ̃n,+l ) (20d)

δµ̃
n+1/2
k : Bkl

1
2

(λ̃n+1,−
l + λ̃n,+l ) + Cklµ̃

n+1/2
l = 0 (20e)

δλ̃n,+l : Mklη
n+1/2
k −QlZ̃n+1/2 + 2Bklµ̃

n+1/2
k = 0 (20f)

δλ̃n+1,−
l : Mklη

n+1/2
k −QlZ̃n+1/2 + 2Bklµ̃

n+1/2
k = 0 (20g)

δφn+1,−
l : Mklη

n+1,−
k = Mklη

n+1/2
k +

1
2

∆t Aklφ
n+1,−
k (20h)

δWn+1,− : Z̃n+1,− = Z̃n+1/2 +
1
2

∆tWn+1,− (20i)

δZn+1/2 : Wn,− = Wn,+ (20j)

δηn,+k : φn,+k = φn,−k . (20k)

In this case, we get two equations (20f), (20g) from the δλ̃l variations which are the same. Also, substi-
tuting the equations for ηn+1/2

k and Z̃n+1/2 from the first two equations into (20f), does not result in a
linear equation for the Lagrange multiplier.

4.2 Firedrake implementation of linear system

∫ L

0

δη
(
φ
n+1/2
h − ˜̃

λ
n+1/2
h

)
dx =

∫ L

0

δη
(
φnh −

∆t
2
gηnh

)
dx, (21a)∫ L

0

(
δφhη

n+1
h −∆tH(x)∂x(δφh)∂x(φn+1/2

h )
)

dx =
∫ L

0

δφhη
n
h dx, (21b)∫ L

0

δλh
( 1

∆t
ηn+1 +

ρ

M
Ĩ + ˜̄µµ̃n+1/2

h

)
dx =

∫ L

0

δλh
( 1

∆t
Z̃n +Wn

)
dx, (21c)∫ L

0

δµ(˜̄µ˜̃
λ
n+1/2
h + Λµ̃n+1/2

h ) dx =0, (21d)∫ L

0

v
( Ĩ
L
− ˜̃
λ
n+1/2
h

)
dx =0, (21e)

Wn+1/2 =Wn − ρ

M

∫ L

0

˜̃
λ
n+1/2
h dx, (21f)

Z̃n+1 =Z̃n + ∆tWn+1/2, (21g)∫ L

0

δηhφ
n+1
h dx =

∫ L

0

δηh
(
φ
n+1/2
h − ∆t

2
gηn+1
h + ˜̃

λ
n+1/2
h

)
dx, (21h)

Wn+1 =Wn+1/2 − ρ

M

∫ L

0

˜̃
λ
n+1/2
h dx, (21i)

where we have introduced ˜̄µ = 2
∆t µ̄, Ĩ =

∫ L
0

˜̃
λ
n+1/2
h dx and a new test function v. Note that in equation

(21c), the updates for Z̃n+1 and subsequently Wn+1/2 are substituted from (21f)-(21g) to eliminate those
scalar variables. The first five equations (21a)-(21e) need to be solved together for the five unknowns
φ
n+1/2
h , ηn+1

h , ˜̃
λ
n+1/2
h , µ̃n+1/2

h , Ĩ. The remaining equations (21f)-(21i) can be then solved in the order
provided.
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4.2.1 Preconditioning

The matrix A defining the operator of the LHS in the system of equations (21a)-(21e), i.e. multiplying
the vector of unknowns (φn+1/2

h , ηn+1
h ,

˜̃
λ
n+1/2
h , µ̃

n+1/2
h , Ĩ)T , is the following

A =


I 0 −I 0 0

∆t∇ · (H(x)∇) I 0 0 0
0 1

∆tI 0 µ̄I ρ
M I

0 0 µ̄I ΛI 0
0 0 −I 0 1

LI

 , (22)

where I here denotes the identity operator. The corresponding matrix for the discrete system (20) is

Adiscrete =


Mkl 0 −Mkl 0 0
−∆t Akl Mkl 0 0 0

0 1
∆tMkl 0 B̃kl

ρ
MQl

0 0 B̃kl Ckl 0
0 0 −Ql 0 Ql

 . (23)

The goal is to reduce the above matrix into a diagonal matrix with some operator for φn+1/2
h and only

mass matrices for the remaining variables. Eliminating Ĩ, then µ̃, ˜̃
λ and η by performing appropriate

manipulations in the “continuum” matrix A, results in the (diagonal) preconditioning matrix

P =


I −∇ · (H(x)∇) 0 0 0 0

0 I 0 0 0
0 0 ( ρM − µ̄

2)I 0 0
0 0 0 ΛI 0
0 0 0 0 1

LI

 . (24)

Another suitable preconditioner could be (?)

P2 =


( ρMLΛ− µ̄2)I − Λ∇ · (H(x)∇) 0 0 0 0

0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

 . (25)

5 Semi-linearisation in water part only

Here we choose to linearise the water part only, by writing h = H(x) + η, but we allow the domain and
the buoy to remain nonlinear. The variational principle becomes

0 =δ
∫ T

0

∫ L

0

−ρ(H(x) + η)∂tφ−
1
2
ρH(x)(∂xφ)2 − 1

2
ρg(H(x) + η)2 − ρg(H(x) + η)H0

+ ρλ(H(x) + η − hb + µ2) dx

−MZẆ − 1
2
MW 2 −MgZ dt (26a)

=
∫ T

0

∫ L

0

−ρδη
(
∂tφ+ gη + g(H(x)−H0)− λ

)
− ρ
(

(H(x) + η)∂t(δφ) +H(x)∂xφ∂x(δφ)
)

+ ρδλ(H(x) + η − hb + µ2) + 2ρλµδµdx

− δZ
(
MẆ +Mg + ρ

∫ L

0

λ dx
)
−MZδẆ −MWδW dt (26b)

=
∫ T

0

∫ L

0

−ρδη
(
∂tφ+ gη + g(H(x)−H0)− λ

)
+ ρδφ

(
∂tη + ∂x(H(x)∂xφ)

)
+ ρδλ(H(x) + η − hb + µ2) + 2ρλµ δµdx

− δZ
(
MẆ +Mg + ρ

∫ L

0

λ dx
)

+MδW (Ż −W ) dt. (26c)
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The resulting equations of motion are:

δη : ∂tφ+ gη + g(H(x)−H0)− λ = 0 (27a)
δφ : ∂tη + ∂x(H(x)∂xφ) = 0 (27b)

δλ : h− hb + µ2 = 0 (27c)
δµ : λµ = 0 (27d)

δZ : MẆ +Mg + ρ

∫ L

0

λ dx = 0 (27e)

δW : Ż = W. (27f)

The variation δµ implies that either:

• λ = 0 and µ2 = hb − h > 0 in the water part of the domain, or

• µ = 0 with λ 6= 0 in the part of the domain under the buoy, where h = hb is satisfied.

5.1 Firedrake implementation of semi-linear system

∫ L

0

δη
(
φ
n+1/2
h − φnh +

∆t
2
gηnh +

∆t
2
g(H(x)−H0)− ∆t

2
λ
n+1/2
h

)
dx =0, (28a)

MWn+1/2 −MWn +
∆t
2
Mg + ρ

∆t
2

∫ L

0

λ
n+1/2
h dx =0, (28b)∫ L

0

δφh(ηn+1
h − ηnh)−∆tH(x)∂x(δφh)∂xφhn+1/2 dx =0 (28c)

Z̃n+1 − Z̃n −∆tWn+1/2 =0 (28d)∫ L

0

δλh
(
H(x) + ηn+1 − hn+1

b + µ2n+1/2

h

)
dx =0, (28e)∫ L

0

δµ(µn+1/2
h λ

n+1/2
h ) dx =0 (28f)∫ L

0

δηh
(
φn+1
h − φn+1/2

h +
∆t
2
gηn+1
h +

∆t
2
g(H(x)−H0)− ∆t

2
λ
n+1/2
h

)
dx =0, (28g)

MWn+1 −MWn+1/2 +
∆t
2
Mg + ρ

∆t
2

∫ L

0

λ
n+1/2
h dx =0. (28h)

6 Extension to 2D ship

The steady state the solution is now given by

0 < x < Lp & Ls < x < L : H(x) = H0, Λ(x) = 0, µ̄(x) =
√
Hs(x)−H0, (29a)

Lp ≤ x < Ls : h = Hs(x), µ̄(x) = 0, Λ(x) = g(Hs(x)−H0), (29b)

with Hs(x) = Hs(x; X̄, Z̄, ψ0) = Z̄ − H + tan(α ± ψ0)|x − X̄| = Z̄ − H + tanα|x − X̄|. Note that we
extend Hs(x) artificially for x < Lp and x > Ls to equal its value at Lp or Ls, respectively.

The variational principle becomes

0 =δ
∫ T

0

∫ L

0

−ρη∂tφ−
1
2
ρH(x)(∂xφ)2 − 1

2
ρgη2 + ρλ̃

(
η − ∂Hs

∂X̄
X̃ − ∂Hs

∂Z̄
Z̃ − ∂Hs

∂ψ0
ψ̃ + 2µ̄µ̃

)
+ ρΛµ̃2 dx

−M
(
X̃U̇ + Z̃Ẇ

)
− ψ̃ṗψ −

1
2
M
(
U2 +W 2

)
− 1

2
p2
ψ

Ix
dt (30)
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and therein variations yield the following evolution equations

δη : ∂tφ+ gη − λ̃ = 0, (31a)

δφ : ∂tη + ∂x
(
Hs(x)∂xφ

)
= 0, (31b)

δX̃ : U̇ − tanα
ρ

M

∫ L

0

sign(x− X̄)λ̃ dx = 0 (31c)

δZ̃ : Ẇ +
ρ

M

∫ L

0

λ̃ dx = 0, (31d)

δψ : ṗψ − ρ sec2 α

∫ L

0

(x− X̄)λ̃ dx = 0, (31e)

δU : ˙̃X = U, (31f)

δW : ˙̃Z = W, (31g)

δpψ : ˙̃
ψ =

pψ
Ix
, (31h)

including

δλ̃ : η − ∂Hs

∂X̄
X̃ − ∂Hs

∂Z̄
Z̃ − ∂Hs

∂ψ0
ψ̃ + 2µ̄µ̃ = 0 (31i)

δµ̃ : µ̄λ̃+ Λµ̃ = 0. (31j)

Since Λ = 0 for 0 < x < Lp, Ls < x < L while µ̄ > 0, it follows from (31j) that λ̃ = 0 on that interval
with a free surface. Likewise, since µ̄ = 0 while Λ 6= 0 for Lp ≤ x < Ls, it follows from (31j) that µ̃ = 0
on that interval under the ship.

The discretised version of the constraint system is(
Akl + ρ

MQkQl + ρ
M (tanα)2QXk Q

X
l + ρ

M (sec2 α)2QψkQ
ψ
l B̃kl

B̃kl Ckl

)(˜̃
λ
n+1/2
k

µ̃
n+1/2
k

)
=(

1
∆t (QlZ̃

n − tanαQXl X̃
n − sec2 αQψl ψ̃

n −Mklη
n
k ) +

(
QlW

n − tanαQXl U
n − sec2 αQψl

pnψ
Ix

)
+Akl

(
∆t
2 gη

n
k − φnk

)
0

)
.

(32)

with ˜̃
λ
n+1/2
k = ∆t

2 λ̃
n+1/2
k and B̃kl = 2

∆tBkl. The above matrix is again symmetric. Upon solving the

linear system and knowing ˜̃
λ
n+1/2
k , the rest of the equations can be solved in the following order:

Mklφ
n+1/2
l = Mklφ

n
l −

1
2

∆t gMklη
n
l +Mkl

˜̃
λ
n+1/2
l (33a)

Un+1/2 = Un +
ρ

M
tanαQXl

˜̃
λ
n+1/2
l (33b)

Wn+1/2 = Wn − ρ

M
Ql

˜̃
λ
n+1/2
l (33c)

p
n+1/2
ψ = pnψ + ρ sec2 αQψl

˜̃
λ
n+1/2
l (33d)

Mklη
n+1
k = Mklη

n
k + ∆t Aklφ

n+1/2
k (33e)

X̃n+1 = X̃n + ∆t Un+1/2 (33f)

Z̃n+1 = Z̃n + ∆tWn+1/2 (33g)

ψ̃n+1 = ψ̃n +
∆t
Ix

p
n+1/2
ψ (33h)

Mklφ
n+1
l = Mklφ

n+1/2
l − 1

2
∆t gMklη

n+1
l +Mkl

˜̃
λ
n+1/2
l (33i)

Un+1 = Un+1/2 +
ρ

M
tanαQXl

˜̃
λ
n+1/2
l (33j)

Wn+1 = Wn+1/2 − ρ

M
Ql

˜̃
λ
n+1/2
l (33k)

pn+1
ψ = p

n+1/2
ψ + ρ sec2 αQψl

˜̃
λ
n+1/2
l . (33l)
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