Buoy Motion in Shallow Water Waves with Inequality Constraint

October 31, 2016

1 Nonlinear dynamics

The actual buoy resides at z = hy(x, Z(t)) above the bottom in a certain horizontal interval from x,(t) <
2z < L with x, the edge of the buoy at the water surface. A simple V-shaped buoy has the form

hy(z, Z(t)) = Z(t) — H — tana(x — L), (1)
where Z — H is the position of the keel. We artificially extend this buoy function hj smoothly into the

entire domain for all 0 < & < L. The water line point at ), is implicitly defined by h(z,,t) = hp(zp, Z).
The constrained variational principle is

T L 1 1
0=3 [ [ =phowo — 3oh(@:0)* = 5pgh? ~ pghtn + MK~ hy -+ ) da

0 0
—~MZW — %MWQ — MgZadt (2a)

T L 1

= [ [ om0+ 5000 + 9(h — Ho) = X) = p(hdW(60) + H(2)0,00.(59)
0 0

+ pdN(h — hy + p?) + 2pApdp d

L
. (MW + Mg+p / Adz) — MZ§W — MWW dt (2b)
0

T L
= [ [ —oon(@0+ 5(006)* + g0~ Ho) = 2) + 56 (01t + 0, (H(2)0,0)
0 0
+ pSA(h — hy + 11%) + 2pA\p dpda

L
-0z (MW + Mg+ p/ )\da:) + MW (Z — W) dt. (2¢)
0

The resulting equations of motion are:

1

Oh: O+ 5(0:0)* + g(h = Ho) = A =0 (3a)

5¢: Oh+ 0p(hdep) =0 (3b)

SA: h—hy4+p?>=0 (3c)

op: Ap=0 (3d)
L

87 : MW+Mg+p/ Adz =0 (3e)
0

SW: Z=W. (3f)

The variation dpu yields that A = 0 so either:
e A\ =0 and p? > 0 in the part of the domain where hy — h = 2 > 0, or
e 1 =0 with A # 0 in the part of the domain under the buoy where h = hy,.

So by introducing the constraint h — hy, + u? = 0 with global Lagrange multiplier A we have imposed the
non-negative nature of hy — h both as inequality as well as an equality. (Reference found online regarding
control theory.)



2 Steady State

The steady state system at rest is ¢ = 0, W =0, Z = Z and h = H(x), hy = Hy(z,Z), A = A(x),
p = fi(x) satisfying

gk — Hy) — A =0 (1a)
h — hy(x, Z) + pu? =0 (4b)
Ap =0 (4c)

L
Mngp/O Adx =0, (4d)

which holds for a reference height Z such that the displaced water of the buoy equals its mass M. This
also defines the waterline point at * = z, = L,,. In steady state the solution then becomes

0<z<L,: H(x)=Hy, A(x)=0, f(z)=+/Hy(x,Z)— Ho, (5a)
Ly<x<L: h=HzZ), jlx)=0, A(z)=g(Hy(x,Z)— Hy), (5b)

in which we extended H,(x) artificially for x < L, to equal its value at L,.

3 Linearisation
The following linearization is applied to the variational principle after we substitute

¢ :d)v h = H(l’) + 1, hb(xa Z) = Hb(va) + M = Hb(xv Z) + Zv (63)
A=A@)+ X, p=jx)+p W=W, Z=Z+2Z (6b)

into (26a)), in which constant terms can be discarded, terms linear in the perturbation variables cancel
after using the steady state solution, and in which only quadratic terms in the variations are kept. Hence,
we find the following variational principle for the linearized equations of motion

T L 1 1 B _ ~ ~
0 =5/ / —p0p — 5pH(2)(0:0)° = 5pgn” + pA(n — Z + 201) + pAji* dz

0 0
—~ MZW — %MWQ dt (7)

T (L ~

=[] =00+ an=3) = plaon(o9) + 1(2)0.00,(50)
+ poN() — Z + 2ifi) + 2p0f(AfL + fX) da
L .
—0Z(MW + / Adz) + MW (Z — W) dt (8)
0

after using the end-point conditions on d¢ and JW. These variations lead to the equations of motion

on: 0p+gn—A=0 (9a)

6¢ = O+ 0x(H(2)p0) =0 (9b)
L

67 MW+p/ Adz =0 (9¢)
0

W Z=W, (9d)

including
SN n—Z+20i=0 (9e)
8f: A+ A =0. (9f)

Since A = 0 for 0 < < L, while g > 0, it follows from @ that A = 0 on that interval with a free
surface. Likewise, since i = 0 while A # 0 for L, <z < L, it follows from @ that i = 0 on that interval
under the buoy.



4 Numerical Implementation

4.1 Galerkin space-time discretisation

Substitute C° finite element Galerkin expansions

hi(,t) = b () om (x), (@, t) = dn(2,t) = du(t)pr(), (10)
)‘h(x’t) = Al(t)@l(m)7 M(:L‘,ﬁ) ~ :uh(x’t) = ( ) ( ) (11)

for h, ¢, A and p into the variational principle yields

=
Q

Q

Az, t)

T
. 1 1
0 :5/ —pMpmedr — §PAkz¢k¢l - §Pngl7lk77l
0
B - . o .1
+ p(MgAme — QNZ + 2By Mifik + Crfufic) — MZW — §MW2 dt, (12)

with matrices

L L
Mi =/ erprdr,  Aw =/ H(2)0y 010501 A,
0 0

L L
B :/ ﬂ(x)apkgol dz, Cy = / A(I)gokgol dx. (13)
0 0

Define N time slabs [t,,, t, + At,] for n =0,..., N. The variational principle with constant At,, = T/N
becomes

0=6 Z pM}el n+1 +77n +)( n+1/2 ¢ln,+) _ M(Zn+1,— + Zn,+)(Wn+1/2 _ W"’+)

1 n n 1 n — T n, n,
B §Atp(A (L2 g1/ +ngl§(nk+1, T gty +))

1 n n
o iAtM(Wn—H/Q) + Atpcklﬂ +1/2 +1/2

in 1 — 7n — 7n ~n
+ Atp) +1/2 (Mkzi(nZ“’ + 772’+) - Qli(z ezt 4 2Bklﬂk+l/2>
N-1
+6 > —pMpn T (g - 201+ gp )
n=-—1
L MZPHL (WL oyt l/2 ety (14)

The resulting equations of motion are

ot Mugp T = Mo — }At gMymt + %AtM’fl;\7+l/2 (15a)
SZ7 s MW = MW QAT (15b)
Sy T Myt = My + At Al (15¢)
SWntl/2 . gntl— _ gnt L Apppntl/2 (15d)
5ﬂ2+1/2 . B, )\n+ 4 Culi ~n+1/2 -0 (15e)
55\"“/2 © Munp T - @ Z"'H’ + 2B l~n+1/2 0 (15¢)
St Mgt = Mige) T - fAth T+ % AtMy A2 (15g)
§ZMHL L MWL = MWntL2 pAt QAT (15h)
ownt .z = znt (151)
St = (150)

The right hand side of the constraint equation (|15f) is actually equivalent to Mkml"’+ — @Q;Z™" but this
is zero since it is valid for n = 0, i.e. at ¢ = 0 and all other subsequent times.



The constraint equations that need to be solved first are the following,

At n 2 ~Mn 1 7n n n At 1 n
S (A + LD 4 S Bui Y = Q2" = M) + QW + A (Srgn — 6F), (16a)

B\ 4 G ™? =0, (16b)

Equivalently, we can define )\n+1/2 %S\ZH/Z and Bkl = %Bm, in which case the above system can be
written as

(AM + £ QL0 Bkl> (i;;““) _ (ﬁ(QzZ" — M) + QuW™ + A (B gnp — ¢}z)) . an

~n+1/2
By Cu) \ it 0
The matrix above is symmetric. Upon solving the above linear system and knowing )\"+1/ 2 , the rest of
the equations can be solved in the following order:
n n 1 n n
My} ™% = Mgy — S At gMpn” + My A, 2 (18a)
Wn+1/2 W — %QZS\ZL—H/Q (18b)
Myt = Mg + At Akl¢n+1/2 (18c)
Zm = Zn 4 ArntL/2 (18d)
Mot = M, ¢n+1/2 - §At M + ]\@z:\lnﬂ/2 (18e)
Wn+1 Wn+1/2 Qlj\?+1/2' (18f)

Alternative formulation . B
Alternatively, one can exchange the expansions for ¢ and n, W and Z, as well as A and fi. (Note that in
the original formulation, ;1 was expanded wrt [J,Z+1'7 and [J,Z”L, but these two ended up being the same.

Jr/)

Here we will expand using /i, The space-time discrete variational principle in this case becomes

0 =5 Z p]b[ 7]7L+1/2( ln+177 - d);L,Jr) _ A[Z’IL-‘:—l/Q(W’n—‘rl,— _ WrL,+)

n=0

1 n n — n n, n n
_iAtp(Akl (ot F o o) + g My, 2y +1/2)

: ~mn n
= A (WL WL W) - AtpClaji /2512

1 yn+1l,— \n, ) n Sn -n
+ §Atp(/\l +1, A '+)(]\Jk”7k+1/2 —0Z +1/2 4 QBkkarl/Q)

N—-1
44 Z —,0]\[ ln”+1 +( ’ln+1.,+ _ ¢’l’1/+1,—) _ A[Z71,+1,+(Wn+1,+ - W"’+1’_). (19)

n=-—1



The resulting equations of motion are

5¢;1”+ :
SWnt
5nZ+1/2 :
Y ARRER
(5/1Z+1/2 :
55\?’+ :
55\”+1’_ :

6¢n+1 — .

gWr L

Y ARRER

ony,

n,+

My ™% = Myt + Af Aot
ZnE =zt g §At W"’**
Mg = Mg — At gMyn™/? + AtMy, ; (Aptb= p Jmh
MW" = MWt - pAth(X?‘“" + N
k/%(i?“’* + 5\?’ )+ Ch ~"+1/2 =0
]\jkmzﬂﬂ —QZn Y2 QBkzﬂZH/Q —0
]\/jkmzﬂ/z —QuZ"Y? L 9B, ﬂn+1/2 —0
Myan ™ = Myan ™% + = AtA ek
ZrthT = Zn 2y §At W”“v*

W =Wt

n + (bn
- Tk

(20a)
(20b)
(20c)
(20d)

(20e)
(20f)
20g)

(
(20h)
(201)

(20j)
(20Kk)

In this case, we get two equations (201), [20g) from the §\; variations which are the same. Also, substi-

tuting the equations for n,

n+1/2

linear equation for the Lagrange multiplier.

4.2 Firedrake implementation of linear system

L n+1/2  In+1/2 - L n At n
; 577(¢h - A )dx_ ) 577(¢h_7977h)d$a

L L
[ o+t = Ao, 6on0n(65 ) ao = [ s
0

L
n P ~.n 1 n n
/0 5)\h(At + 1+ +1/2)dx:/0 5>\h(AtZ + W) dz

/ 5,u(ﬁ§\2+1/2 + AﬂZH/Z) dz =0,
0

where we have introduced ji = A t,u, I= /0

/L v(£ — §\"L+1/2) dz =0
Jo L h ’

L .
Iy o}
0

Zn—i—l :Zn + AtVVn-‘rl/Q7

and Z"t1/2 from the first two equations into (201), does not result in a

(21a)
(21b)
(21c)
(21d)
(21e)

(21f)

(21g)

. At -
/ S dar = / S (6 = S+ ) de, (21)
0

L .
Wn+1 :W?’L+1/2 _ M/ 5\2-&-1/2 dIIZ,
0

rL+1/2
h

(21i)

dz and a new test function v. Note that in equation

(21, the updates for Z"*! and subsequently W"*'/2 are substituted from (21f)-(21g) to eliminate those
scalar variables. The first five equations (21a)-(21€e)) need to be solved together for the five unknowns

Z+1/2, 772”'1, 5\Z+1/2, [I,Z+1/2, I. The remaining equations (21f)-(21i) can be then solved in the order

provided.



4.2.1 Preconditioning

The matrix A defining the operator of the LHS in the system of equations (21al)-(21€)), i.e. multiplying

the vector of unknowns (qbZH/Q, 77,?“, 5\Z+1/2, ﬁz+1/27 I~)T, is the following

I 0 —-I 0 0
AtV-(H@)V) I 0 0 0
A= 0 ~I 0 pl LI, (22)
0 0 @l AI 0
0 0 -I 0 +I

where I here denotes the identity operator. The corresponding matrix for the discrete system is

My, 0 — My, 0 0
—At Ay, My, 0 0 0
Adiscrete = 0 AaMw 0 Bu £ |. (23)
0 0 By Ch 0
0 0 -t 0 @

The goal is to reduce the above matrix into a diagonal matrix with some operator for ¢Z+1/ % and only

mass matrices for the remaining variables. Eliminating I, then it A and n by performing appropriate
manipulations in the “continuum” matrix A, results in the (diagonal) preconditioning matrix

I-V-(Hx)V) 0 0 0 0
0 I 0 0 0
P = 0 0 (&L-g)I 0 o |. (24)
0 0 0 A0
0 0 0 0 1r

Another suitable preconditioner could be (?)

(LLA - > —AV-(H(z)V) 0 0 0 0
0 I 00 0
Py = 0 01 00 (25)
0 0010
0 000 I

5 Semi-linearisation in water part only

Here we choose to linearise the water part only, by writing h = H(x) + 1, but we allow the domain and
the buoy to remain nonlinear. The variational principle becomes

T L 1 1
=5 [ || —plHE) 1130 = 3pHE) 061~ Gpali (@) + ) = paHle) + )
0 0
+ pA(H (2) + 1 — by + p*) dz
~ MZW — %MWZ — MgZdt (264)
T L
:/0 /O _P5U(8t¢ +gn+g(H(x) — Hy) — A) — p((H(:v) +1)0:(6¢) + H(x)aw¢8w(5¢>)
+ pON(H (z) + 0 — by + 1) + 2pApdp d
L
—5Z<MW+Mg+p/ )\dx) — MZ§W — MWW dt (26D)
0
T L
:/0 /0 —pon (8¢ + gn + g(H(x) — Ho) — X) + pdp(0yn + 0, (H (2)0,9))
+ pSA(H () + 1 — hy + p*) + 2pApu dpda

L
- 5Z(MW + Mg+ p/ )\dx) + MW (Z — W) dt. (26¢)
0



The resulting equations of motion are:

on: g +gn+g(H(x) = Ho) —A=0 (27a)
6¢: O+ 0y (H(x)0y0) =0 (27b)
SA\: h—hy+p>=0 (27¢)
op: Ap=0 (27d)
L
67 : MW+Mg+p/ Adz =0 (27¢)
0
SW: Z=W. (27f)
The variation §u implies that either:
e A =0and u? = hy — h > 0 in the water part of the domain, or
e ;1 =0 with A # 0 in the part of the domain under the buoy, where h = hy, is satisfied.
5.1 Firedrake implementation of semi-linear system
L
n At At At .
/ on(oh % = o + Sogmi + Sg(H (@) — Ho) = Ay ?) da =0, (282)
0
At At (P,
MW" V2 — MW" + Z=Mg + p—- A2 qg —0, (28b)
0
L
/ S (P — 1) — ALH (2)0,(66m)a ™ V/2 di =0 (28¢)
0
Zn—Zn - At Y2 =0 (28d)
L
/0 S\ (H(z) + 7™ — hptt 4 52 da =0, (28¢)
L
| ) e =0 (28)
L
n At At At
/ S (S — o7+ Sram Tt Trg(H () — Ho) = oAT?) da =0, (28¢)
0
. . At At (F
MW" — Mwn™+1/2 4 5 Mg +p i A2 4 =0, (28h)
6 Extension to 2D ship
The steady state the solution is now given by
O<z<L,&Ls<z<L: H(z)=Hy, A(x)=0, pa(x)=+/Hs(z)— Ho, (29a)
L,<x<Ls: h=Hsz), @(z)=0, A(z)=g(Hs(x)— Hy), (29b)

with Hy(z) = Hg(z; X, Z,90) = Z — H + tan(a & ¢g)|z — X| = Z — H + tanalr — X|. Note that we
extend H(x) artificially for x < L, and & > L, to equal its value at L, or L, respectively.
The variational principle becomes

T L 1 1 < OH, . 0H, - OH, -
— _ _ H A 2_ - 2 _ 7SX— —SZ— s 2,~ A~2
0 5/0 /O po:¢ = 5pH (@)(9:6)° = 5p9n” + pA(n 53 5% a¢0¢+ i) + pAR? da
2
— M (XU +2W) = gy - %M (U2 +W?) - %% dt (30)



and therein variations yield the following evolution equations

on: Oip+gn—A=0, (31a)

8¢ : Oy + 0, (H ()w¢):0 (31b)

6X: U- tana— sign(z — X)Adz =0 (31c)

07 W+—/ Adz =0, (31d)

0 Py — psecza/() (x — X)\dz =0, (31le)

SU: X =U, (31f)

Wi Z=W, (31g)

opy b= %, (31h)

including

o\ n—af{sX—aH“—aH%Hm:o (31i)

Sfi: A+ AL =0. (31j)

Since A=0for 0 <z < Ly, Ly <z < L while i > 0, it follows from that A = 0 on that interval
with a free surface. Likewise, since i = 0 while A # 0 for L, < z < Ly, it follows from that =0
on that interval under the ship.

The discretised version of the constraint system is

<Akl + L QrQr + £ (tan a)2Q¥ QF + £ (sec? a)2QY QY Bk) (f\n+1/2>

By Cul TR

(Alt(QlZ" — tananXf(" — seczan/’J}" — Mymy) + (QZW” —tana QU™ — sec? aQ T ) + Akl( thng — gb’,g)) .

0
(32)
with XZH/Q = %S\ZH/Q and By, = 2 By The above matrix is again symmetric. Upon solving the
linear system and knowing S\ZH/ 2, the rest of the equations can be solved in the following order:
1 =
Myd)™? = My oy — At gMyn] + My AptH7? (33a)
untiz = gn 4 M tan o Q7 \ ?H/Q (33b)
w2 gy _ %Ql:\;ﬂrl/? (33¢)
pz+1/2 =py + psec? aQ}pinH/z (33d)
Mklnk Mklnk + At Akl¢n+1/2 (336)
Xt = X" 4 AU tY/? (33f)
Zmt = Zn 4 At W2 (33g)
Il = g 4 fpz-&-l/Q (33h)
1 z, .
Myt = Myop /% - At gMyn " + My Ap/2 (331)
grtl = gntl/2 4 M P tana QXN 7“/2 (33))
wrtl — pntl/2 _ Ql;\n+1/2 (33K)
pZH pn+l/2 + psec’ o Qw/\nﬂ/2 (331)
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