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1 Ground water model

Consider the width-averaged nonlinear diffusion equation modelling groundwater flow in a

channel (Barenblatt 1996)
O(wyhim) — agly(wyhmOyhy,) =w, R/ (Mporoe) (1)

with groundwater level and variable h,, = h,,(y,t) [L] above a horizontal datum z = 0,
channel width w, ~ 0.1m, acceleration of gravity g = 9.81m/s* [L/T?], derivative 9, in
the along-channel direction y € [0, L,] of a cell of length L, ~ 0.85m [L], porosity my,. €
[0.1,0.3], given rainfall R = R(t) [L/T], the fraction of a pore o, € [0.5,1] that can be filled

with water due to residual air, factor

o =/ (Vityer ) 2)

with permeability & € [107%,107%m? [L?] and viscosity of water v = 107%m?/s [L?/T].

Boundary conditions are no flow at y = L,, such that

0, hum =0 (3)



and a Dirichlet condition at y = 0, the other channel end, equal to the water level h.,,(t) in

a short outflow canal
hin(0,t) = hem (). (4)

The initial condition is h,,(y,0) = hmo(y). Make a sketch of the situation.

The assumptions are that the groundwater level stays underground thus not inducing
any surface run-off and that the flow is hydrostatic, with variations in the horizontal y—
direction much longer than the vertical length scales. The canal level h,,(t) holds in a short
channel of length L. between —L, < y < 0 with a weir at y = —L.. The water level at the
weir is critical, meaning that the flow speed V. = +/gh. is critical at y = —L.. Assuming
stationarity and by using Bernoulli’s equation to link the speed and water depth {Ve.,, hem }
in the channel to that at the weir {V,, h.} one obtains that
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1
hem + =V2 2 ghem = ghe V2?2 =Zgh, 5
hem + 5Vom = 9 ghe + 5Ve =5 9he, (5)
2
= h, = ghcm such that Q. = h.V. =y/g max (2h, /3, 0)3/27 (6)

assuming in addition that V2 < ghe, = 0 (see, e.g., Munson et al. 2005).
To obtain further insight, we rewrite and analyse (1) next. The groundwater equation is

clearly a continuity equation

wy, R
(w0l + 0y 0h) =2 @
with the Darcy velocity
k
v — b 8)
VMporTe
and Darcy flux
Q = w,q =wyh,,v = —wvhmfﬁyp = —wvhmiﬁyp
H Vpo
Ky kg
~ — 70yhm = —w@hmmﬁyhm = —wvozg@y (hfn/2) (9)



with density of water pg and where we used the hydrostatic approximation and depth-
integration to the free surface at z = h,, by using d,p/po ~ g0yhy,. The first and last term

in (1) display the water balance as follows, in the case that there is no y—dependence:
Othum, =R/ (Mpor0e). (10)

Hence, for h,, zero initially and constant rainfall, we find h,, = tR/(mye0.) showing that
for myer = 0. = 1 unity the groundwater level rises directly with rainfall, while it rises faster

for general my,, < 1 and 0. < 1, showing that the modelling of rainfall supply is consistent.

Hence, the canal level is modelled by the outflow at y = — L. and inflow at y = 0 as follows
dhem 1 9 2 3/2
Lcwvw :mporaeQO - Qc = wvmporgeéagay(hmﬂyzo - wv\/gmax ghcm(t>7 0 .

In summary, the complete mathematical groundwater model is:

wy, R

Or(Wyhm) — g0y (WyhimOyhm,) = in yel0,L,] (11)
MporOe
Oyhy =0 at y=1L, (12)
hin(0,t) =hen(t) at y=0 (13)
dhem . 2 32
Lcwvw :wvmpor%agﬁy(hfnﬂy:o — Wyy/g max <§hcm(t), 0) (14)

plus initial conditions for h,, and h,. The multiplication by my,0c accommodates the
flow out of the groundwater matrix into open space (?), while the y—derivative of h? has
been taken rather than using h,,0,h,, as otherwise a simple explicit discretisation with
hm(0,0) = 0 is and A, (0) = 0 will not lead to water flux into the canal. It may be necessary

to rewrite the equations such that they fit an appropriate finite element weak formulation.

2 Questions

1. a) Write your own numerical program solving the heat equation u; = u,, with Dirichlet

boundary data as well as initial data using finite elements and using both the forward
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Euler and Crank-Nicolson time stepping scheme. You can, e.g., use the Thomas al-
gorithm or the backslash in matlab. Provide all steps required in the finite element

discretisation in detail on paper before you start programming.

b) Argue how you can use the stability results for the finite difference scheme to find
a time step for the finite element scheme. Van de Kan et al. (2005) provide more

information on how to find the actual finite element stability criterion.

¢) Compare the numerical results of the two implementations, for § = 0,1/2. Use, for
example, a top-hat profile with unit value in the middle and zero values at the edges,
and exp(—a(x — x,,)?) for sufficiently large @ and x,,, = 1/2 lying within your domain.
Compare your finite difference and finite element solutions. Advanced: make a table of

convergence using the L>®—error.

d) Numerically investigate the stability for # = 0,1/2. Demonstrate this by succinctly
showing your results in appropriate graphs. E.g., reproduce a relevant figure in Chapter

2 of Morton and Mayers (2005).

. Discretise (11)—(14) using an explicit finite element space and time discretisation that
keeps the adjoint structure in tact. Provide all steps required in detail first. Use an
explicit scheme. Use the time step criterion for the finite difference case to obtain and
state a time step estimate. Show how the flux at y = 0 arising after multiplication of
the main partial differential equation by a test function and subsequent integration by

parts can be eliminated. Should one take h,,(0,t) = hepn(t) in this calculation?

. Perform numerical simulations for the parameter values:

Mpor 203, O = 087 Ly =0.8m k= 1078m27 Wy = 01m7 (15>

Rpnaz =0.000125m/s, L. = 0.05m. (16)

Start with h,,(y,0) = 0, hepn(0) = 0. Model the system for ¢ = 0,...,100s and give



output profiles of hey,, R(t) every 2s and h,, every 10s. Demonstrate numerical con-
vergence of your scheme for the solution at ¢ = 100s. Has the system reached steady
state; what is the steady-state value of h.,, and steady-state profile h,,(y)? Finally,
vary the rain every 10s, apply rain 1,2, 4 or 9s out of 10s or at fixed lower percentages
for fixed R4, and display the changes in Ay, (y,t), hem(t), R(t) sensibly. Compare with
your finite difference solver and interpret your results. Hint: Perhaps first implement

the easier problem with h., = 0.07m fixed and then add the canal equation.

4. Advanced: Use a Crank-Nicolson scheme instead to solve the above problem (in Fire-
drake). Detail your discretisation. Find a method to solve this nonlinear algebraic
system (e.g., use Picard or Newton iteration). Implement it, demonstrate that the it-
eration converges and then compare it with the explicit (finite element and difference)

discretisation.
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A Solutions

Given Dirichlet boundary conditions u(0,t) = u(L,t) = 0, multiply
Up = Ugy (17)

with a test function v = v(z) with v(0) = v(L) = 0 and integrate (by parts) to obtain

L L
/ vuy do = —/ Uyl d, (18)
0 0

in which the boundary terms cancel because v(0) = v(L) = 0. This should be the weak for-
mulation for Firedrake using v and u as a continuous Galerkin approximation with Dirichlet
boundary conditions. For L = 1, the initial conditions could be, e.g., u(x,0) = Ae~ole—aml?
with z,, = L/2 and suitable « such that w(0,t) = u(L,t) = 0; u(z,0) = Az (1 — z); or,
u(r,0) = A — a(x — x,)? for | — z,,| < \/AJa. Using compact (linear) basis functions

v =y(x) with ¢/ =2,..., N and Galerkin expansions
u(z,t) & un(x, ) =u;()e;(r) = wer + unpen e+ upes = upy, (19)

since u; = uyy1 = 0, we obtain

du.; du
Mi’jd_t] = — Suju; = Mi’jd_t] = —Sju (20)
L L
M’L’j/ :/0\ gOi/ng/ dr and Si/j’ :/0 8x907/ 1‘%0]’ dx? (21)

with (N —1) x (N —1)-matrices M ; and Sy ;. Using the forward Euler and Crank-Nicolson

time integration schemes, the weak Firedrake form and the matrix formulations become

L L
/ ou" dz = / vu” — Atv,u? dz (22)
0 0

L 1 L L 1 L
/ vu"t —At/ v ul T dz = / vu" — —At/ Vgt da (23)
0 2 0 0 2 0

Mi/jIUj/n+1 :Mi/j/ll,?/ — AtSZ/j/ugL/ (24)

(Mi’j + %Atsi’j’>uj’n+1 :(Mi’j’ . %Atsi’f)u?/’ (25)



for which the initial condition needs to be projected onto the finite element basis using

fOL vup(x,0)der = fOL vu(x,0) dz yielding u; (0) = MZ,_JI, fOL pyu(z,0)de.

Groundwater model FEM: Multiplying (11) times test function ¢ = ¢(y) with h,,(0,¢) =
hem(t) yields, after integration by parts and using that dyh,, = 0 at y = L, as well as
him(0,t) = hen(t), that

L L
y Y R
/ qOthy, + aghm0,q0yhy, dy + agq(0) Ry, Oyl |y—0 = g dy (26)
0 0 mporae
Al 1 2 3/2
LCT = mporaeag§8y(hfn)]y:0—\/§max (ghcm, 0) s (27)

1 1 dhem 2 i
ag§8y(h,2n)|y:0 = Lc + \/g max (_h’cma 0) ) (28)

MporTe At Mporoe 3

in which the underlined 8,(h2,)|,=0 is eliminated between the two equations. These two

equations are thus combined to obtain

L L
v 0)L. dhepn, v R
/ qOth,, dy + 9(0) —/ —aghm0yq0yhy, + q dy
0 mporge dt 0 poro-e
0 2 3/2
_ %\/gma}( (§hcm, O> (29)
porVe

or

L L
v 0)L. dh,,(0,t Y R
/ qO¢h,, dy + a(0) (0.%) :/ —aghp,0yq0yhy, + mq dy
0 0

MyporTe dt

3/2
9O nax (%hm((), ), o) (30)

Note that ¢ remains unconstraint. Consider piecewise linear finite elements. The forward



Euler and Crank-Nicolson time discretizations yield the (Firedrake) weak formulations

L L
v Lohiit v L.h?
/ ghp™ dy + = = / qhy, dy + —
0 0

MporTe porOe
L n 3/2
+ At/ (_@gh?n 0yqOy,h,, + q ) dy — At V9 max <—h?m, 0) (31)
0 MporTe MporOe 3
Ly Lchn+1 1 Ly 1 9 3/2
[ty T o [ gt oty + o6tV max (—h’;i;l, 0)
0 MporTe 0 MporTe 3
Ly L.h" 1 Ly R" 1+ R+l
= / ghy, dy + —— + —At/ (—aghfn@yqayh% + u> a
0 mporo_e 2 0 mporae
1 2 3/2
_ —Atﬁ max (—h?m, O> ) (32)
2 MporOTe 3

Taking expansions ¢ = ¢;(z) and h,,, = h;p;(z), for all 4,j = 1,..., N,, with N,, nodes, as

well as hy = he,, the matrix form for the forward Euler case becomes

LRy Lol 2 G
Mijh;-lJrl + ! (5,;1 = M,Ljhzl + —1(511 + Atb? — At \/g max (ghqf, 0) 61’1

MporOe MporOe MporOe
for i=1,...,N, (33)
Ly Ly @Rn
M;; :/ pip;dy and b = / (—aghz Dy iOyhm, + — ) dy (34)
0 0 MporOe

with the Einstein summation convention used (here for j) and Kronecker delta symbol §;; = 1
when ¢ = 1 and d;; = 0 when ¢ # 0. Note that for a piecewise linear finite element

approximation the unknown vector

cm )

n+1 zn+l n+1 n+1\T
(Rt by R R

includes the moor variables as well as the canal variable combined.

This formulation yields (visually) the same answer as the finite difference calculations!



