
Informal finite element course:
introduction to vector spaces, inner products and norms.

Dr David Ham

November 15, 2013

1 Real vector spaces

Abstraction is core to mathematics: mathematical objects are defined by the core
properties which they might have. When we think of vectors, we think of points in
Rn, the space of n-vectors whose components are real numbers. However thinking
more abstractly, we can define vectors as any objects which behave like vectors under
the appropriate set of operations.

Definition 1.1. A real1 vector space, V, is a set equipped with two operations, vector
addition and multiplication by a (real) scalar such that for any x, y, z P V, and for any
α, β P R:

1. Multiplicative closure: αx P V.

2. Additive closure: x + y P V.

3. Commutativity: x + y = y + x.

4. Additive associativity: (x + y) + z = x + (y + z).

5. Multiplicative associativity : α(βx) = (αβ)x.

6. Distributivity of scalar sums : (α + β)x = αx + βx.

7. Distributivity of vector sums : α(x + y) = αx + αy.

8. Additive identity: There exists 0 P V such that for any x P V, 0 + x = x.

9. Multiplicative identity: 1x = x.

Informally, this means that vectors can be added to each other, and multiplied by
scalars, and these operations combine together in the expected ways. The most obvi-
ous missing property is any way of multiplying vectors together. In fact, this is not a
required property of vector spaces, although we shall primarily be interested in vector
spaces for which some form of multiplication exists.

1more generally, it is possible to define vector spaces for which the scalars are drawn from another
field, such as the complex numbers.
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1.1 Examples of vector spaces

Example 1.1.1 (Rn). The most obvious example of a real vector space is the space of
n-vectors whose components are real numbers.

Example 1.1.2 (Functions over Ω). Consider the set of functions from some domain Ω
to R:

V = t f : Ω Ñ Ru (1)

In this case each such function is a vector with the operations of addition and multi-
plication considered pointwise. That is to say, if f P V and α P R then g = α f is the
function given by:

g(x) = α f (x) @x P Ω (2)

Similarly, if f , g P V then h = f + g is given by:

h(x) = f (x) + g(x) @x P Ω (3)

The zero vector in V is the zero function, given by 0(x) = 0 @x P Ω.

Definition 1.2 (function space). A function space is a vector space whose vectors are
functions.

2 Subspaces

An absolutely critical part of the finite element method is working with function
spaces contained in other function spaces.

Definition 2.1 (subspace). A subset, S of a vector space V equipped with the same
addition and multiplication by a scalar operations as V is a subspace if it is closed
under addition and multiplication by a scalar.

Lemma 2.2. A subspace of a vector space is itself a vector space.

This is simple to prove by checking that the subspace still fulfils all of the conditions
of a vector space.

2.1 Subspace (counter)-examples

Example 2.1.1 (Lines through the origin). The set of points in R2 such that αx+ βy = 0
for some fixed α and β is a subspace.

Example 2.1.2 (Lines not through the origin). The set of points αx + βy = γ for some
fixed α and β and some fixed γ ‰ 0 is not a subspace of R2.

Example 2.1.3 (Continuous functions). The set of continuous functions over some
domain Ω is a subspace of all of the functions over that domain.
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Example 2.1.4 (Positive functions). The set of functions over some domain Ω such
that f (x) ą 0 @x P Ω is not a subspace of all of the functions over Ω.

Definition 2.3 (Cn(Ω)). The set Cn(Ω) is the set of functions f : Ω Ñ R such that the
n-th partial derivatives of f exist and are continuous.

Hence C0(Ω) consists of the continuous functions on Ω, C1(Ω) consists of all of the
functions whose first derivative is continuous, and so on. In particular, the space
C8(Ω) consists of all functions for which an unlimited number of continuous deriva-
tives exist.

Example 2.1.5 (Cn(Ω)). Cn(Ω) is a subspace of Cm(Ω) for all m ă n.

3 Inner products

We noted earlier that a vector space need not be equipped with any form of prod-
uct between vectors. However we already know that the function spaces Rn come
equipped with the dot product:

a ¨ b =
n

ÿ

i=1

aibi @a, b P Rn (4)

Just as mathematicians generalise the concept of vector to anything with the proper-
ties of a vector, the concept of a dot product can also be generalised.

Definition 3.1 (Inner product). An inner product x¨, ¨y on a real vector space V is a
function V ˆV Ñ R. With the following properties for any vectors x, y, and z, and
scalars α and β:

1. Commutativity xx, yy = xy, xy.

2. Bilinearity xαx + βy, zy = αxx, zy+ βxy, zy.

3. Positivity xx, xy ě 0. Additionally xx, xy = 0 if and only if x = 0.

An important property of vector spaces equipped with inner products is orthogonal-
ity:

Definition 3.2 (orthogonality). Two vectors x and y are orthogonal with respect to an
inner product x¨, ¨y if xx, yy = 0.

3.1 Inner product examples

Example 3.1.1 (the dot product). Unsurprisingly, the dot product on Rn is an inner
product. This product is also referred to as the l2 inner product.
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Example 3.1.2 (scalar multiplication). On the vector space R, the dot product just
reduces to multiplication of scalars, so multiplication is an inner product on R

Example 3.1.3 (the L2 inner product in one dimension). For square-integrable real-
valued functions on a closed interval [a, b], the L2 inner product is given by:

x f , gyL2 =

ż b

a
f gdx (5)

Example 3.1.4 (the L2 inner product in higher dimensions). The L2 inner product
generalises to vector-valued functions on domains of any dimension (Ω Ă Rn Ñ Rm)
by using the dot product to form the integral. For any square-integrable functions
f , g:

x f , gyL2 =

ż

Ω
f ¨ gdx (6)

The preceding examples use the space of square-integrable functions, which we define
here for completeness:

Definition 3.3 (square-integrable functions, L2(Ω)). The vector space of square-integrable
functions f : Ω Ă Rn Ñ Rm is the set of functions for which:

ż

Ω
f ¨ f dx (7)

exists and is finite.

The precise limits of L2(Ω) is a more complex question than we will address here,
but it is sufficient to know that all “well-behaved” functions we will encounter in the
finite element method are in L2(Ω).

4 Norms

Another property which we might be interested in for a vector is its magnitude. For
a vector in Rn we are used to the Euclidean norm, or l2 norm given by:

}x} =

g

f

f

e

n
ÿ

i=1

x2
i =

?
x ¨ x @x P Rn (8)

Like the inner product, there is a generalised concept of a magnitude function on a
vector space:

Definition 4.1 (norm). A norm on } ¨ } on a real vector space V is a function V Ñ R

with the following properties for any vectors x and y, and scalar α:

1. Positivity }x} ě 0. Additionally }x} = 0 if and only if x = 0.

4



2. Linear scaling }αx} = |α|}x}.

3. Triangle inequality }x + y} ď }x}+ }y}.

The properties of norms are quite closely related to those for inner products, so it is
not surprising that there is a relationship between inner products and norms:

Theorem 4.2 (induced norms). For every inner product x¨, ¨y on a vector space V there
is a norm on that vector space given by:

}x} =
a

xx, xy (9)

This norm is referred to as the norm induced by the inner product.

We will also state without proof the following important result:

Theorem 4.3 (Cauchy-Schwarz inequality). If V is an inner product space then:

xx, yy ď }x}}y} (10)

where the norm is the norm induced by the inner product.

4.1 Induced norm examples

Definition 4.4. l2 norm The Euclidean, or l2 norm on Rn is the norm induced by the
dot product.

Definition 4.5. L2 norm The L2 norm on L2(Ω) is the norm induced by the L2 inner
product. It is given by:

} f }L2 =

d

ż

Ω
f (x)2dx (11)

5 Inner product spaces and Hilbert spaces

Definition 5.1 (Inner product space). A vector space equipped with a particular inner
product is an inner product space.

Definition 5.2 (Hilbert spaces). An inner product space which is complete in the norm
induced by the inner product is called a Hilbert space.

Completeness is beyond the scope of this course, however in a non-precise sense, it
means that the limit of any convergent sequence of vectors is also in the vector space.
Loosely speaking, this means that calculus “works” in Hilbert spaces. Consequently
they are very important to the finite element method.
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6 Bases for vector spaces

A core feature of a vector space is closure under linear combinations. That is for a
vector space V:

ÿ

i

αixi P V, @xi P V, @αi P R (12)

This leads us to define a very useful concept:

Definition 6.1 (span). The span of a set of vectors is the set of all linear combinations
of those vectors.

An immediate consequence of this is the following:

Lemma 6.2. The span of a set of vectors in a vector space V is a subspace of V.

If we have a set of vectors, and the subspace they span, it is very useful to know if
this set is minimal: do we need all the vectors to be in the set in order to span that
subspace, or is there a smaller subset which would do.

Definition 6.3 (linear independence). A set of vectors xi P V is linearly independent
if none of the vectors in the set lies in the span of the other vectors. That is to say:

xj ‰
ÿ

i‰j

αixi, @αi P R (13)

This leads us to the core definition of this part:

Definition 6.4 (basis). A basis for a vector space is a linearly independent set of vectors
which span the whole vector space.

That is to say, a basis is a minimal set of vectors tφiu P V such that:

@x P V, Dxi P R such that x =
ÿ

xiφi (14)

It is not the case that a unique basis exists for any given function space. Indeed, every
function space has an infinite number of bases. However the cardinality of the basis,
that is to say the number of vectors in the basis set, is unique to a function space.

Definition 6.5 (dimension). The dimension of a vector space is the cardinality of its
basis.

6.1 Basis examples

Example 6.1.1 (Rn). Clearly the canonical vector space is Rn. In this case, the most
commonly used basis vectors are aligned with the coordinate axes. In R3 these are
conventionally denoted i, j and k, and we know we can write any x P R3 as:

x = xi + yj + zk (15)
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of course we usually just write:

x =

 i
j
k

 (16)

When we express a vector as a list of numbers, we have implicitly chosen a basis and
the list of numbers is the list of coefficients of the basis functions.
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