The following three equations need to be solved simultaneously for $\phi^{n+1/2}$, η^{n+1} and $\lambda^{n+1/2}$. The weak formulation for Firedrake has the following form and includes the use of a Heaviside step function $\Theta(x-L_p)$ and three test functions $v_{1,2,3}$,

$$\int_{0}^{L} v_{1} \left(\phi^{n+1/2} - \phi^{n} + \frac{\Delta t}{2} g \eta^{n} - \Theta(x - L_{p}) \lambda^{n+1/2} \right) dx = 0$$
 (1a)

$$\int_{0}^{L} \left(v_2(\eta^{n+1} - \eta^n) - \Delta t H(x) \partial_x v_2 \partial_x \phi^{n+1/2} \right) dx = 0$$
 (1b)

$$\int_0^L v_3 \Theta(x - L_p) \left(\frac{1}{\Delta t} (\eta^{n+1} - Z^n) - W^n + \frac{\rho}{m} \int_0^L \Theta(\tilde{x} - L_p) \lambda^{n+1/2} (\tilde{x}) \, \mathrm{d}\tilde{x} \right) \mathrm{d}x = 0. \quad (1c)$$

On attempting to solve to problem as a mixed system using Schur complements, the tricky part is how to implement the last equation (1c). In finite element matrix form with $\lambda = \lambda_{\ell} \varphi_{\ell}$ etc (under summation convention), this will become

$$\frac{1}{\Delta t}(M_{k\ell}\eta^{n+1} - Q_k Z^n) - Q_k W^n + \frac{\rho}{m} Q_k Q_\ell \lambda_\ell^{n+1/2} = 0, \tag{2}$$

with modified mass matrix $M_{k\ell}$ (includes also the heavyside function) and vector Q_k .

Algorithm using real function spaces:

1. Define the following integral, which is a constant:

$$I = \int_0^L \Theta(\tilde{x} - L_p) \lambda^{n+1/2}(\tilde{x}) \, d\tilde{x}.$$
 (3a)

2. Multiply by test function v_4 , which is a constant in the real space, and integrate in [0, L]:

$$\int_0^L v_4 \left(I - \int_0^L \Theta(\tilde{x} - L_p) \lambda^{n+1/2}(\tilde{x}) \, \mathrm{d}\tilde{x} \right) \, \mathrm{d}x = 0. \tag{3b}$$

3. The second term on the RHS is independent of x so it can go outside the integral, which will then be equal to the domain length L:

$$\int_{0}^{L} v_{4} I \, dx - v_{4} L \int_{0}^{L} \Theta(\tilde{x} - L_{p}) \lambda^{n+1/2}(\tilde{x}) \, d\tilde{x} = 0.$$
 (3c)

4. Take v_4 inside the integral, since it is a constant, and replace dummy variable \tilde{x} by x:

$$\int_0^L v_4 \left(\frac{I}{L} - v_4 \Theta(x - L_p) \lambda^{n+1/2}(x) \, \mathrm{d}x \right) = 0. \tag{3d}$$

Equation (3d) can be now solved in conjuction with (1a)-(1c) and, by replacing the red term in (1c) by I, a solution can be sought for the 4 variables $\phi^{n+1/2}$, η^{n+1} and $\lambda^{n+1/2}$ and I.