Motion of a buoy in linear shallow water
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In what follows, ¢(x,t) is the velocity potential, n(z,t) the free surface de-
viation, Z(t) the position of the buoy’s centre of mass and W (t) its speed. p
is the water’s density, g is gravity and M is the buoy’s mass, which are both
constants. A is a Lagrange multiplier used to impose the constraint n, = Z
under the buoy.

1 Firedrake formulation

The weak formulation for Firedrake has the following form and includes the use
of a Heaviside function ©(x — L,), zero for x < [, and one for > L,, as follows:
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Equations (1a)-(1e) have to be solved simultaneously for ¢Z+1/2, wntl/2) )\Z+1/2,
nptt, Z7H (in matrix form it can be solved for )\ZH/Z first and then the rest of

the steps are explicit, see section . Alternatively, one can eliminate Z"*! and
Wn+1/2 and solve for the remaining three unknowns, i.e. use eq. (1f) instead.



The final two steps are explicit anf are given below
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2 Discretisation

Consider a C°finite element spatial discretization. All nodes are denoted by
i,j Nodes at or under the free water surface are denoted by 4, j with the subset
of nodes at the free surface denoted by k,[. Nodes under the hull are denoted by
i and the subset of nodes at the hull’s surface by I~c, L. Hence, the finite element
expansions used are (the Einstein summation convention is adopted)

on(@, 2, t) =¢;(1)g; (2, 2),  mn(x,t) = m(t)p(x) or mulz,t) =n(t)e;(z).
Defining the following matrices
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the equations of motion are
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Such a constraint problem can be discretized in time using various versions of
the RATLLE algorithm, the constraint extension of the symplectic second order

Stormer-Verlet scheme for constraint systems [I}, 2, 3, 4]. We then obtain the
following time discrete version of
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The Lagrange multiplier \*t1/2 is determined by substituting the updates nlfhLl
and Z"*! into the discrete constraint , leading to a linear equation for this
Lagrange multiplier.
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