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In what follows, φ(x, t) is the velocity potential, η(x, t) the free surface de-
viation, Z(t) the position of the buoy’s centre of mass and W (t) its speed. ρ
is the water’s density, g is gravity and M is the buoy’s mass, which are both
constants. λ is a Lagrange multiplier used to impose the constraint ηb = Z
under the buoy.

1 Firedrake formulation

The weak formulation for Firedrake has the following form and includes the use
of a Heaviside function Θ(x−Lp), zero for x < lp and one for x ≥ Lp, as follows:

∫ L

0

δηhφ
n+1/2
h dx =

∫ L

0

δηh

(
φn

h −
∆t
2
gηn

h +
∆t
2

Θ(x− Lp) δηhλ
n+1/2
h

)
dx (1a)

MWn+1/2 =MWn − ∆t
2
ρ

∫ L

0

Θ(x− Lp)λn+1/2
h dx (1b)∫ L

0

δφhη
n+1
h dx =

∫ L

0

δφhη
n
h dx (1c)

+
∫ L

0

(
H0Θ(x− Lp) +HbΘ(Lp − x)

) (
∆t∂xδφh∂xφ

n+1/2
h

)
dx

Zn+1 =Zn + ∆tWn+1/2 (1d)

0 =
∫ L

0

δλh

(
Θ(Lp − x)λn+1/2

h + Θ(x− Lp)(ηn+1
h − Zn+1)

)
dx (1e)

=
∫ L

0

δλh

(
Θ(Lp − x)λn+1/2

h + Θ(x− Lp)(ηn+1
h − Zn −∆tWn)

+ Θ(x− Lp)
(∆t)2

2
ρ

M

∫ L

0

Θ(x− Lp)λn+1/2
h dx

)
dx (1f)

Equations (1a)-(1e) have to be solved simultaneously for φn+1/2
h , Wn+1/2, λn+1/2

h ,
ηn+1

h , Zn+1 (in matrix form it can be solved for λn+1/2
h first and then the rest of

the steps are explicit, see section 2). Alternatively, one can eliminate Zn+1 and
Wn+1/2 and solve for the remaining three unknowns, i.e. use eq. (1f) instead.
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The final two steps are explicit anf are given below∫ L

0

δηhφ
n+1
h dx =

∫ L

0

δηh

(
φ

n+1/2
h − ∆t

2
gηn+1

h +
∆t
2

Θ(x− Lp)λn+1/2
h

)
dx

(1g)

MWn+1 =MWn+1/2 − ∆t
2
ρ

∫ L

0

Θ(x− Lp)ρλn+1/2
h dx. (1h)

2 Discretisation

Consider a C0–finite element spatial discretization. All nodes are denoted by
î, ĵ. Nodes at or under the free water surface are denoted by i, j with the subset
of nodes at the free surface denoted by k, l. Nodes under the hull are denoted by
ĩ and the subset of nodes at the hull’s surface by k̃, l̃. Hence, the finite element
expansions used are (the Einstein summation convention is adopted)

φh(x, z, t) =φî(t)ϕî(x, z), ηh(x, t) = ηl(t)ϕl(x) or ηh(x, t) = ηl̂(t)ϕl̂(x).

Defining the following matrices

Mk̂l̂ =
∫ L

0

ϕk̂ϕl̂ dx, Ql̃ =
∫ L

Lp

ϕl̃|Hb(x,Z̄) dx, (2)

Aîĵ =
∫ Lp

0

H0∂xϕî · ∂xϕĵ dx+
∫ L

Lp

Hb(x, Z̄)∂xϕî · ∂xϕĵ dx.

the equations of motion are

δλk̃ : Mk̃l̃ηl̃ −Qk̃Z = 0

δηk̂ : Mk̂l̂φ̇l̂ + gMk̂l̂ηl̂ − δk̂l̃Mm̃l̃λm̃ = 0
δφl̂ : Mk̂l̂η̇k̂ −Ak̂l̂φk̂ = 0

δZ : MẆ + ρQk̃λk̃ = 0

δW : Ż = W. (3)

Such a constraint problem can be discretized in time using various versions of
the RATLLE algorithm, the constraint extension of the symplectic second order
Störmer-Verlet scheme for constraint systems [1, 2, 3, 4]. We then obtain the
following time discrete version of (3)

Mk̂l̂φ
n+1/2

l̂
=Mk̂l̂φ

n
l̂
− ∆t

2
gMk̂l̂η

n
l̂

+
∆t
2
δk̂l̃Mm̃l̃λ

n+1/2
m̃ (4a)

MWn+1/2 =MWn − ∆t
2
ρQk̃λ

n+1/2

k̃
(4b)

Mk̂l̂η
n+1

k̂
=Mk̂l̂η

n
k̂

+ ∆tAk̂l̂φ
n+1/2

k̂
(4c)

Zn+1 =Zn + ∆tWn+1/2 (4d)

0 =Mk̃l̃η
n+1

l̃
−Qk̃Z

n+1 (4e)

Mk̂l̂φ
n+1

l̂
=Mk̂l̂φ

n+1/2

l̂
− ∆t

2
gMk̂l̂η

n+1

l̂
+

∆t
2
δk̂l̃Mm̃l̃λ

n+1/2
m̃ (4f)

MWn+1 =MWn+1/2 − ∆t
2
ρQk̃λ

n+1/2

k̃
(4g)
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The Lagrange multiplier λn+1/2 is determined by substituting the updates ηn+1

l̃

and Zn+1 into the discrete constraint (4e), leading to a linear equation for this
Lagrange multiplier.
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