Motion of a buoy in linear shallow water

August 13, 2015

In what follows, $\phi(x,t)$ is the velocity potential, $\eta(x,t)$ the free surface deviation, Z(t) the position of the buoy's centre of mass and W(t) its speed. ρ is the water's density, g is gravity and M is the buoy's mass, which are both constants. λ is a Lagrange multiplier used to impose the constraint $\eta_b = Z$ under the buoy.

1 Firedrake formulation

The weak formulation for Firedrake has the following form and includes the use of a Heaviside function $\Theta(x-L_p)$, zero for $x < l_p$ and one for $x \ge L_p$, as follows:

$$\int_{0}^{L} \delta \eta_{h} \phi_{h}^{n+1/2} \, \mathrm{d}x = \int_{0}^{L} \delta \eta_{h} \left(\phi_{h}^{n} - \frac{\Delta t}{2} g \eta_{h}^{n} + \frac{\Delta t}{2} \Theta(x - L_{p}) \, \delta \eta_{h} \lambda_{h}^{n+1/2} \right) \, \mathrm{d}x \quad (1a)$$

$$MW^{n+1/2} = MW^{n} - \frac{\Delta t}{2} \rho \int_{0}^{L} \Theta(x - L_{p}) \, \lambda_{h}^{n+1/2} \, \mathrm{d}x \quad (1b)$$

$$\int_{0}^{L} \delta \phi_{h} \eta_{h}^{n+1} \, \mathrm{d}x = \int_{0}^{L} \delta \phi_{h} \eta_{h}^{n} \, \mathrm{d}x \quad (1c)$$

$$+ \int_{0}^{L} \left(H_{0} \Theta(x - L_{p}) + H_{b} \Theta(L_{p} - x) \right) \left(\Delta t \partial_{x} \delta \phi_{h} \partial_{x} \phi_{h}^{n+1/2} \right) \, \mathrm{d}x$$

$$Z^{n+1} = Z^{n} + \Delta t W^{n+1/2} \quad (1d)$$

$$0 = \int_{0}^{L} \delta \lambda_{h} \left(\Theta(L_{p} - x) \, \lambda_{h}^{n+1/2} + \Theta(x - L_{p}) (\eta_{h}^{n+1} - Z^{n+1}) \right) \, \mathrm{d}x \quad (1e)$$

$$= \int_{0}^{L} \delta \lambda_{h} \left(\Theta(L_{p} - x) \, \lambda_{h}^{n+1/2} + \Theta(x - L_{p}) (\eta_{h}^{n+1} - Z^{n} - \Delta t W^{n}) \right)$$

$$+ \Theta(x - L_{p}) \frac{(\Delta t)^{2}}{2} \frac{\rho}{M} \int_{0}^{L} \Theta(x - L_{p}) \lambda_{h}^{n+1/2} \, \mathrm{d}x \right) \, \mathrm{d}x \quad (1f)$$

Equations (1a)-(1e) have to be solved simultaneously for $\phi_h^{n+1/2}$, $W^{n+1/2}$, $\lambda_h^{n+1/2}$, η_h^{n+1} , Z^{n+1} (in matrix form it can be solved for $\lambda_h^{n+1/2}$ first and then the rest of the steps are explicit, see section 2). Alternatively, one can eliminate Z^{n+1} and $W^{n+1/2}$ and solve for the remaining three unknowns, i.e. use eq. (1f) instead.

The final two steps are explicit and are given below

$$\int_{0}^{L} \delta \eta_{h} \phi_{h}^{n+1} dx = \int_{0}^{L} \delta \eta_{h} \left(\phi_{h}^{n+1/2} - \frac{\Delta t}{2} g \eta_{h}^{n+1} + \frac{\Delta t}{2} \Theta(x - L_{p}) \lambda_{h}^{n+1/2} \right) dx$$
(1g)

$$MW^{n+1} = MW^{n+1/2} - \frac{\Delta t}{2} \rho \int_0^L \Theta(x - L_p) \rho \lambda_h^{n+1/2} dx.$$
 (1h)

2 Discretisation

Consider a C^0 -finite element spatial discretization. All nodes are denoted by \hat{i}, \hat{j} . Nodes at or under the free water surface are denoted by i, j with the subset of nodes at the free surface denoted by k, l. Nodes under the hull are denoted by \tilde{i} and the subset of nodes at the hull's surface by \tilde{k}, \tilde{l} . Hence, the finite element expansions used are (the Einstein summation convention is adopted)

$$\phi_h(x,z,t) = \phi_{\hat{i}}(t)\varphi_{\hat{i}}(x,z), \quad \eta_h(x,t) = \quad \eta_l(t)\varphi_l(x) \quad \text{or} \quad \eta_h(x,t) = \eta_{\hat{i}}(t)\varphi_{\hat{i}}(x).$$

Defining the following matrices

$$M_{\hat{k}\hat{l}} = \int_{0}^{L} \varphi_{\hat{k}} \varphi_{\hat{l}} \, \mathrm{d}x, \qquad Q_{\bar{l}} = \int_{L_{p}}^{L} \varphi_{\bar{l}} |_{H_{b}(x,\bar{Z})} \, \mathrm{d}x, \tag{2}$$
$$A_{\hat{i}\hat{j}} = \int_{0}^{L_{p}} H_{0} \partial_{x} \varphi_{\hat{i}} \cdot \partial_{x} \varphi_{\hat{j}} \, \mathrm{d}x + \int_{L_{p}}^{L} H_{b}(x,\bar{Z}) \partial_{x} \varphi_{\hat{i}} \cdot \partial_{x} \varphi_{\hat{j}} \, \mathrm{d}x.$$

the equations of motion are

$$\begin{split} \delta\lambda_{\tilde{k}} : \quad & M_{\tilde{k}\tilde{l}}\eta_{\tilde{l}} - Q_{\tilde{k}}Z = 0 \\ \delta\eta_{\hat{k}} : \quad & M_{\hat{k}\hat{l}}\dot{\phi}_{\hat{l}} + gM_{\hat{k}\hat{l}}\eta_{\hat{l}} - \delta_{\hat{k}\tilde{l}}M_{\tilde{m}\tilde{l}}\lambda_{\tilde{m}} = 0 \\ \delta\phi_{\hat{l}} : \quad & M_{\hat{k}\hat{l}}\dot{\eta}_{\hat{k}} - A_{\hat{k}\hat{l}}\phi_{\hat{k}} = 0 \\ \delta Z : \quad & M\dot{W} + \rho Q_{\tilde{k}}\lambda_{\tilde{k}} = 0 \\ \delta W : \quad & \dot{Z} = W. \end{split} \tag{3}$$

Such a constraint problem can be discretized in time using various versions of the RATLLE algorithm, the constraint extension of the symplectic second order Störmer-Verlet scheme for constraint systems [1, 2, 3, 4]. We then obtain the following time discrete version of (3)

$$M_{\hat{k}\hat{l}}\phi_{\hat{l}}^{n+1/2} = M_{\hat{k}\hat{l}}\phi_{\hat{l}}^{n} - \frac{\Delta t}{2}gM_{\hat{k}\hat{l}}\eta_{\hat{l}}^{n} + \frac{\Delta t}{2}\delta_{\hat{k}\tilde{l}}M_{\tilde{m}\tilde{l}}\lambda_{\tilde{m}}^{n+1/2}$$
(4a)

$$MW^{n+1/2} = MW^n - \frac{\Delta t}{2} \rho Q_{\tilde{k}} \lambda_{\tilde{k}}^{n+1/2}$$

$$\tag{4b}$$

$$M_{\hat{k}\hat{l}}\eta_{\hat{k}}^{n+1} = M_{\hat{k}\hat{l}}\eta_{\hat{k}}^{n} + \Delta t A_{\hat{k}\hat{l}}\phi_{\hat{k}}^{n+1/2}$$
(4c)

$$Z^{n+1} = Z^n + \Delta t W^{n+1/2} \tag{4d}$$

$$0 = M_{\tilde{k}\tilde{l}}\eta_{\tilde{l}}^{n+1} - Q_{\tilde{k}}Z^{n+1} \tag{4e}$$

$$M_{\hat{k}\hat{l}}\phi_{\hat{l}}^{n+1} = M_{\hat{k}\hat{l}}\phi_{\hat{l}}^{n+1/2} - \frac{\Delta t}{2}gM_{\hat{k}\hat{l}}\eta_{\hat{l}}^{n+1} + \frac{\Delta t}{2}\delta_{\hat{k}\hat{l}}M_{\tilde{m}\hat{l}}\lambda_{\tilde{m}}^{n+1/2}$$
(4f)

$$MW^{n+1} = MW^{n+1/2} - \frac{\Delta t}{2} \rho Q_{\tilde{k}} \lambda_{\tilde{k}}^{n+1/2}$$
 (4g)

The Lagrange multiplier $\lambda^{n+1/2}$ is determined by substituting the updates $\eta_{\tilde{l}}^{n+1}$ and Z^{n+1} into the discrete constraint (4e), leading to a linear equation for this Lagrange multiplier.

References

- [1] B.J. Leimkühler and R.D. Skeel 1994: Symplectic numerical integrators in constrained Hamiltonian systems. *J. Comp. Phys* **112**, 117.
- [2] C. Cotter and S. Reich 2004: Time stepping algorithms for classical mechanics. Notes. http://wwwf.imperial.ac.uk/~sreich/03_6.pdf
- [3] S. Reich and B. Leimkühler 2009: Simulating Hamiltonian Dynamics. Cambridge University Press. 396 pp.
- [4] C. Cotter, J. Frank and S. Reich 2004: Hamiltonian particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation. *SIAM J. Appl. Dyn. Syst.* **3**, 69–83.