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1 Ground water model

Consider the width-averaged nonlinear diffusion equation modelling groundwater flow in a

channel (Barenblatt 1996)

∂t(wvhm)− αg∂y(wvhm∂yhm) =wvR/(mporσe) (1)

with groundwater level and variable hm = hm(y, t) [L] above a horizontal datum z = 0,

channel width wv ≈ 0.1m, acceleration of gravity g = 9.81m/s2 [L/T 2], derivative ∂y in

the along-channel direction y ∈ [0, Ly] of a cell of length Ly ≈ 0.85m [L], porosity mpor ∈

[0.1, 0.3], given rainfall R = R(t) [L/T ], the fraction of a pore σe ∈ [0.5, 1] that can be filled

with water due to residual air, factor

α =k/(νmporσe) (2)

with permeability k ∈ [10−8, 10−9]m2 [L2] and viscosity of water ν = 10−6m2/s [L2/T ].

Boundary conditions are no flow at y = Ly such that

∂yhm =0 (3)
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and a Dirichlet condition at y = 0, the other channel end, equal to the water level hcm(t) in

a short outflow canal

hm(0, t) = hcm(t). (4)

The initial condition is hm(y, 0) = hm0(y). Make a sketch of the situation.

The assumptions are that the groundwater level stays underground thus not inducing

any surface run-off and that the flow is hydrostatic, with variations in the horizontal y–

direction much longer than the vertical length scales. The canal level hcm(t) holds in a short

channel of length Lc between −Lc < y < 0 with a weir at y = −Lc. The water level at the

weir is critical, meaning that the flow speed Vc =
√
ghc is critical at y = −Lc. Assuming

stationarity and by using Bernoulli’s equation to link the speed and water depth {Vcm, hcm}

in the channel to that at the weir {Vc, hc} one obtains that

ghcm +
1

2
V 2
vm ≈ ghcm = ghc +

1

2
V 2
c =

3

2
ghc, (5)

=⇒ hc =
2

3
hcm such that Qc = hcVc =

√
gmax (2hcm/3, 0)3/2, (6)

assuming in addition that V 2
cm � ghcm ≈ 0 (see, e.g., Munson et al. 2005).

To obtain further insight, we rewrite and analyse (1) next. The groundwater equation is

clearly a continuity equation

∂t(wvhm) + ∂y(vhm) =
wvR

mporσe
(7)

with the Darcy velocity

v =− kg

νmporσe
∂yhm (8)

and Darcy flux

Q ≡ wvq ≡wvhmv = −wvhm
κ

µ
∂yp = −wvhm

κ

νρ0
∂yp

≈− κg

ν
∂yhm = −wvhm

kg

νmporσe
∂yhm = −wvαg∂y

(
h2m/2

)
(9)
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with density of water ρ0 and where we used the hydrostatic approximation and depth-

integration to the free surface at z = hm by using ∂yp/ρ0 ≈ g∂yhm. The first and last term

in (1) display the water balance as follows, in the case that there is no y–dependence:

∂thm =R/(mporσe). (10)

Hence, for hm zero initially and constant rainfall, we find hm = tR/(mporσe) showing that

for mpor = σe = 1 unity the groundwater level rises directly with rainfall, while it rises faster

for general mpor < 1 and σe < 1, showing that the modelling of rainfall supply is consistent.

Hence, the canal level is modelled by the outflow at y = −Lc and inflow at y = 0 as follows

Lcwv
dhcm

dt
=mporσeQ0 −Qc ≡ wvmporσe

1

2
αg∂y(h

2
m)|y=0 − wv

√
gmax

(
2

3
hcm(t), 0

)3/2

.

In summary, the complete mathematical groundwater model is:

∂t(wvhm)− αg∂y(wvhm∂yhm) =
wvR

mporσe
in y ∈ [0, Ly] (11)

∂yhm =0 at y = Ly (12)

hm(0, t) =hcm(t) at y = 0 (13)

Lcwv
dhcm

dt
=wvmpor

σe
2
αg∂y(h

2
m)|y=0 − wv

√
gmax

(
2

3
hcm(t), 0

)3/2

(14)

plus initial conditions for hm and hcm. The multiplication by mporσ accommodates the

flow out of the groundwater matrix into open space (?), while the y–derivative of h2m has

been taken rather than using hm∂yhm as otherwise a simple explicit discretisation with

hm(0, 0) = 0 is and hcm(0) = 0 will not lead to water flux into the canal. It may be necessary

to rewrite the equations such that they fit an apporpriate finite element weak formulation.

2 Questions

1. a) Write your own numerical program solving the heat equation ut = uxx with Dirichlet

boundary data as well as initial data using finite elements and using both the forward
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Euler and Crank-Nicolson time stepping scheme. You can, e.g., use the Thomas al-

gorithm or the backslash in matlab. Provide all steps required in the finite element

discretisation in detail on paper before you start programming.

b) Argue how you can use the stability results for the finite difference scheme to find

a time step for the finite element scheme. Van de Kan et al. (2005) provide more

information on how to find the actual finite element stability criterion.

c) Compare the numerical results of the two implementations, for θ = 0, 1/2. Use, for

example, a top-hat profile with unit value in the middle and zero values at the edges,

and exp(−α(x−xm)2) for sufficiently large α and xm = 1/2 lying within your domain.

Compare your finite difference and finite element solutions. Advanced: make a table of

convergence using the L∞–error.

d) Numerically investigate the stability for θ = 0, 1/2. Demonstrate this by succinctly

showing your results in appropriate graphs. E.g., reproduce a relevant figure in Chapter

2 of Morton and Mayers (2005).

2. Discretise (11)–(14) using an explicit finite element space and time discretisation that

keeps the adjoint structure in tact. Provide all steps required in detail first. Use an

explicit scheme. Use the time step criterion for the finite difference case to obtain and

state a time step estimate. Show how the flux at y = 0 arising after multiplication of

the main partial differential equation by a test function and subsequent integration by

parts can be eliminated. Should one take hm(0, t) = hcm(t) in this calculation?

3. Perform numerical simulations for the parameter values:

mpor =0.3, σe = 0.8, Ly = 0.85m k = 10−8m2, wv = 0.1m, (15)

Rmax =0.000125m/s, Lc = 0.05m. (16)

Start with hm(y, 0) = 0, hcm(0) = 0. Model the system for t = 0, . . . , 100s and give
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output profiles of hcm, R(t) every 2s and hm every 10s. Demonstrate numerical con-

vergence of your scheme for the solution at t = 100s. Has the system reached steady

state; what is the steady-state value of hcm and steady-state profile hm(y)? Finally,

vary the rain every 10s, apply rain 1, 2, 4 or 9s out of 10s or at fixed lower percentages

for fixed Rmax and display the changes in hm(y, t), hcm(t), R(t) sensibly. Compare with

your finite difference solver and interpret your results. Hint: Perhaps first implement

the easier problem with hcm = 0.07m fixed and then add the canal equation.

4. Advanced: Use a Crank-Nicolson scheme instead to solve the above problem. Detail

your discretisation. Find a method to solve this nonlinear algebraic system (e.g., use

Picard or Newton iteration). Implement it, demonstrate that the iteration converges

and then compare it with the explicit (finite element and difference) discretisation.
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A Solutions

Given Dirichlet boundary conditions u(0, t) = u(L, t) = 0, multiply

ut = uxx (17)

with a test function v = v(x) with v(0) = v(L) = 0 and integrate (by parts) to obtain∫ L

0

vut dx = −
∫ L

0

vxux dx, (18)

in which the boundary terms cancel because v(0) = v(L) = 0. This should be the weak for-

mulation for Firedrake using v and u as a continuous Galerkin approximation with Dirichlet

boundary conditions. For L = 1, the initial conditions could be, e.g., u(x, 0) = Ae−α|x−xm|
2

with xm = L/2 and suitable α such that u(0, t) = u(L, t) ≈ 0; u(x, 0) = Ax (1 − x); or,

u(x, 0) = A − α(x − xm)2 for |x − xm| ≤
√
A/α. Using compact (linear) basis functions

v = ϕi′(x) with i′ = 2, . . . , N and Galerkin expansions

u(x, t) ≈ uh(x, t) =uj(t)ϕj(x) = u1ϕ1 + uN+1ϕN+1 + uj′ϕj′ = uj′ϕj′ , (19)

since u1 = uN+1 = 0, we obtain

Mi′j
duj
dt

=− Si′juj =⇒Mi′j
duj′

dt
= −Si′j′uj′ (20)

Mi′j′ =

∫ L

0

ϕi′ϕj′ dx and Si′j′ =

∫ L

0

∂xϕi′∂xϕj′ dx, (21)

with (N−1)×(N−1)–matrices Mi′j′ and Si′j′ . Using the forward Euler and Crank-Nicolson

time integration schemes, the weak Firedrake form and the matrix formulations become∫ L

0

vun+1 dx =

∫ L

0

vun −∆tvxu
n
x dx (22)∫ L

0

vun+1 +
1

2
∆t

∫ L

0

vxu
n+1
x dx =

∫ L

0

vun − 1

2
∆t

∫ L

0

vxu
n
x dx (23)

Mi′j′uj′
n+1 =Mi′j′u

n
j′ −∆tSi′j′u

n
j′ (24)(

Mi′j +
1

2
∆tSi′j′

)
uj′

n+1 =
(
Mi′j′ −

1

2
∆tSi′j′

)
unj′ , (25)
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for which the initial condition needs to be projected onto the finite element basis using∫ L
0
vuh(x, 0) dx =

∫ L
0
vu(x, 0) dx yielding uj′(0) = M−1

i′j′

∫ L
0
ϕi′u(x, 0) dx.

Groundwater model FEM: Multiplying (11) times test function q = q(y) with hm(0, t) =

hcm(t) yields, after integration by parts and using that ∂yhm = 0 at y = Ly as well as

hm(0, t) = hcm(t), that∫ Ly

0

q∂thm + αghm∂yq∂yhm dy =

∫ Ly

0

qR

mporσe
dy (26)

Lc
dhcm

dt
=αgmporσe

1

2
∂y(h

2
m)|y=0 −

√
gmax

(
2

3
hcm, 0

)3/2

, (27)

in which ∂y(h
2
m)|y=0 is eliminated between the two equations. These two equations are

combined to obtain∫ Ly

0

q∂thm dy +
Lc

q(0)mporσe

dhcm
dt

=

∫ Ly

0

−αghm∂yq∂yhm +
qR

mporσe
dy

− q(0)

mporσe

√
gmax

(
2

3
hcm, 0

)3/2

. (28)

Note that q remains unconstraint. Consider piecewise linear finite elements. The forward

Euler and Crank-Nicolson time discretizations yield the (Firedrake) weak formulations∫ Ly

0

qhn+1
m dy +

Lch
n+1
cm

mporσe
=

∫ Ly

0

qhnm dy +
Lch

n
cm

mporσe

+ ∆t

∫ Ly

0

(
−αghnm ∂yq∂yhnm +

qRn

mporσe

)
dy −∆t

√
g

mporσe
max

(
2

3
hncm, 0

)3/2

(29)∫ Ly

0

qhn+1
m dy +

Lch
n+1
cm

mporσe
+

1

2
∆t

∫ Ly

0

αghn+1
m ∂yq∂yh

n+1
m dy +

1

2
∆t

√
g

mporσe
max

(
2

3
hn+1
cm , 0

)3/2

=

∫ Ly

0

qhnm dy +
Lch

n
cm

mporσe
+

1

2
∆t

∫ Ly

0

(
−αghnm∂yq∂yhnm +

q(Rn +Rn+1)

mporσe

)
dy

− 1

2
∆t

√
g

mporσe
max

(
2

3
hncm, 0

)3/2

. (30)

Taking expansions q = ϕi(x) and hm = hjϕj(x), for all j = 1, . . . , Nn with Nn nodes, as well
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as h1 = hcm the matrix form for the forward Euler case becomes

Mijh
n+1
j +

Lch
n+1
1

mporσe
= Mijh

n
j +

Lch
n
1

mporσe
+ ∆tbni −∆t

√
g

mporσe
max

(
2

3
hn1 , 0

)3/2

(31)

Mij =

∫ Ly

0

ϕiϕj dy and bni =

∫ Ly

0

(
−αghnm ∂yϕi∂yhnm +

ϕiR
n

mporσe

)
dy. (32)

Note that for a piecewise linear finite element approximation the unknown vector

(hn+1
cm , hn+1

2 , . . . , hn+1
j , . . . , hn+1

Nn
)T

includes the moor variables as well as the canal variable combined.

This formulation yields (visually) the same answer as the finite difference calculations!
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