Hi all,
So given this Darcy problem:
a = (dot(v, w) - p*div(w) - div(v)*q)*dx
L = f*q*dx
where f = "12*pi*pi*sin(pi*x[0]*2)*sin(pi*x[1]*2)*sin(2*pi*x[2])" and with these solver options:
'ksp_type': 'gmres',
#'ksp_monitor_true_residual': True,
'pc_type': 'fieldsplit',
'pc_fieldsplit_type': 'schur',
'pc_fieldsplit_schur_fact_type': 'upper',
'pc_fieldsplit_schur_precondition': 'selfp',
'fieldsplit_0_ksp_type': 'preonly',
'fieldsplit_0_pc_type': 'bjacobi',
'fieldsplit_0_sub_pc_type': 'ilu',
'fieldsplit_1_ksp_type': 'preonly',
'fieldsplit_1_pc_type': 'hypre',
'fieldsplit_1_pc_hypre_type': 'boomerang'
And without specifying any boundaries (my forcing function f is chosen so that the pressure is homogeneous on the boundary), RT0 and BDM works beautifully.
However, with Taylor-Hood elements and VMS (which is equal order CG1 plus a least squares stabilization), the velocity works but the pressure solution is screwed up.
Why is that?
Thanks,
Justin