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What are we interested in?

I (Predominantly) finite element simulations
I primary application areas in geophysical fluids (ocean and

atmosphere)
I simulations on unstructured and semi-structured meshes

I Providing high-level interfaces for users, with performance

I the moon, on a stick



How does FE fit a stencils session?

I Numerics tells us the elementary operation we apply
everywhere in the mesh (a "kernel")

I Mesh topology gives us the "stencil" pattern
I Our job: efficiently apply the kernel over the whole mesh
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Express what, not how

I User code should make as few decisions about
implementation as possible

I FE discretisations expressed symbolically using the Unified
Form Language

I developed in the FEniCS project
(http://www.fenicsproject.org)

I symbolic representation compiled to a C kernel
I Data to feed to kernel (and interface to solvers) provided

by Firedrake (http://www.firedrakeproject.org)
I Execution of kernel over entire domain expressed as

parallel loop with access descriptors
I uses PyOP2 unstructured mesh library

(http://github.com/OP2/PyOP2)
I implementation of loop taken out of user hands

http://www.fenicsproject.org
http://www.firedrakeproject.org
http://github.com/OP2/PyOP2


Firedrake

I High level finite element computations
I http://www.firedrakeproject.org
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An example

from firedrake import *
mesh = UnitSquareMesh(32, 32)
BDM = FunctionSpace(mesh, "BDM", 3)
DG = FunctionSpace(mesh, "DG", 2)
W = BDM * DG
sigma, u = TrialFunctions(W)
tau, v = TestFunctions(W)
f = Function(DG).interpolate(Expression(

"10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)"))
a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
L = - f*v*dx
bc0 = DirichletBC(W.sub(0), Expression(("0.0", "-sin(5*x[0])")), 1)
bc1 = DirichletBC(W.sub(0), Expression(("0.0", "sin(5*x[0])")), 2)
w = Function(W)
solve(a == L, w, bcs=[bc0, bc1])
sigma, u = w.split()



PyOP2

I A python library for unstructured mesh computations
I http://github.com/OP2/PyOP2
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http://github.com/OP2/PyOP2


PyOP2 data model

I Data types
Set e.g. cells, degrees of freedom (dofs)
Dat data defined on a Set (one entry per set

element)
Map a mapping between two sets (e.g. cells to

dofs)
Global global data (one entry)
Kernel a piece of code to execute over the mesh

I access descriptors
I READ, RW, WRITE, INC

I iteration construct
par_loop execute a Kernel over every element in a Set



Example

par_loop(kernel, elements,
element_data(READ), # direct access
node_data(WRITE, elem_node), # indirect
count(INC))

I executes kernel for each ele in elements
first argument data corresponding to ele (read-only)
second argument the nodes of this ele (written)
third argument a global counter (incremented)

I runtime knows it has to care about data dependencies for
I write to node_data
I increment into elem_count



Synthesis, not analysis

I Access descriptors on parallel loops mean:
I code generation requires synthesis, not analysis
I determination of when halo exchanges need to occur is

automatic
I colouring for shared memory parallelisation can be

computed automatically
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Semi-structured meshes

I Many application areas have a "short" direction
I ocean and atmosphere
I thin shells

I Numerics dictate we should do something different in
short direction

I Use semi-structured meshes
I unstructured in "long" directions, structured in short
I can we exploit this structure?



A picture of triangles

⊗ = →



Admits a fast implementation

I Exploit structure in mesh to amortize indirect lookups
I arrange for iteration over short direction to be innermost

loop
I pay one indirect lookup per mesh column
I walk up column directly
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A bandwidth bound test case

I Walk over mesh, read from vertices and cells, sum into
global

void kernel(double *a, double *x[], double *y[]) {
const double area = fabs(x[0][0]*(x[2][1]-x[4][1])

+ x[2][0]*(x[4][1]-x[0][1])
+ x[4][0]*(x[0][1]-x[2][1]));

*a += area * 0.5 * y[0][0];
}

I Can we sustain an appreciable fraction of memory
bandwidth?



Measuring throughput

I "Effective" data volume
I assume every piece of data is touched exactly once (in

perfect order)
I don’t count data movement for indirection maps
I effectively, just count the volume of degrees of freedom

touched
I "Valuable" bandwidth

I effective data volume per second
I Actual memory bandwidth will be higher (reading

indirection maps)
I but this is not "useful"



Benchmark setup

I 2D unstructured mesh: 806110 cells, 403811 vertices.
I 2D coordinate field located at vertices (implicit 3rd

coordinate)
I scalar field stored at cell centres

I Run with increasing number of extruded cell layers (nlayer)
I data volume (806110 * nlayer) + 403811 * 2 (nlayer + 1)

doubles
I 1 layer: 18.4MB
I 200 layers: 2468MB

I Execute kernel over mesh 100 times



Single node

I Intel Sandybridge 4 cores (2 way hyperthreading)
I 32kB L1 cache (per core)
I 256 kB L2 cache (per core)
I 8 MB L3 cache (shared)

I Measured stream bandwidth (8 threads)
I 11341 MB/s



Effect of good base numbering

I Being completely unstructured hurts a lot
I Compare default (mesh generator) numbering with

renumbered mesh using 2D space filling curve
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Adding layers amortizes indirection cost

I L3 cache bandwidth
I low layer numbers hit the L3 more often (indirection

lookups)
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I What about actual throughput though?



Valuable bandwidth

I Above ~20 layers, indirection cost "hidden"
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More threads

I Hyperthreading gives some further gains (82% stream
bandwidth)
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Possible to be unstructured and fast

I A good numbering gets you a reasonable way there
I If there is structure in your problem, use it!
I High level abstractions need not kill performance
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