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What are we interested in?

» (Predominantly) finite element simulations

» primary application areas in geophysical fluids (ocean and
atmosphere)
» simulations on unstructured and semi-structured meshes

» Providing high-level interfaces for users, with performance

» the moon, on a stick
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How does FE fit a stencils session?

» Numerics tells us the elementary operation we apply

everywhere in the mesh (a "kernel")
» Mesh topology gives us the "stencil" pattern
» Our job: efficiently apply the kernel over the whole mesh
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Maintaining abstractions
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Express what, not how

» User code should make as few decisions about
implementation as possible
» FE discretisations expressed symbolically using the Unified
Form Language
» developed in the FEniCS project
(http://www.fenicsproject.org)
» symbolic representation compiled to a C kernel
» Data to feed to kernel (and interface to solvers) provided
by Firedrake (http://www.firedrakeproject.org)
» Execution of kernel over entire domain expressed as
parallel loop with access descriptors
» uses PyOP2 unstructured mesh library
(http://github.com/0OP2/PyOP2)
» implementation of loop taken out of user hands
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http://www.fenicsproject.org
http://www.firedrakeproject.org
http://github.com/OP2/PyOP2

Firedrake

» High level finite element computations
» http://www.firedrakeproject.org

Unified Form
Firedrake Language (UFL)

A performance-portable Problem definition!
Finite-element computation in FEM weak form
framework
FFC Form
Geometry, .
fields and Compiler

meshes Local assembly
kernels, data
dependencies

PyOP2 Interface
pyo P2 Parallel loops over

Parallel unstructured mesh| kernels with access
computation framework descriptors

Parallel scheduling, code generation

Explicitly
CPU parallel

(+MPI + hard\'nfllare-
specific

OpenMP/ implemen-

OpenCL) tation

Imperial College
London


http://www.firedrakeproject.org

An example

from firedrake import =*

mesh = UnitSquareMesh(32, 32)

BDM = FunctionSpace(mesh, "BDM", 3)
DG = FunctionSpace(mesh, "DG", 2)

W = BDM * DG
sigma, u = TrialFunctions(W)
tau, v = TestFunctions(W)

f = Function(DG).interpolate(Expression(
"10xexp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)"))
a = (dot(sigma, tau) + div(tau)xu + div(sigma)*v)=*dx
L = - fxvxdx
bc@® = DirichletBC(W.sub(@), Expression(("0.0", "-sin(5%*x[0@]1)")), 1)
bc1 = DirichletBC(W.sub(@), Expression(("0.0", "sin(5*x[@1)")), 2)
w = Function(W)
solve(a == L, w, bcs=[bc@, bcl])
sigma, u = w.split()
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PyOP2

» A python library for unstructured mesh computations
» http://github.com/0P2/PyOP2

User code

Access
Descriptors

Application code

PyOP2 core

Runtime Core
partitioning, parallel scheduling

Instant PyOpenCL PyCUDA
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http://github.com/OP2/PyOP2

PyOP2 data model

» Data types
Set e.g. cells, degrees of freedom (dofs)
Dat data defined on a Set (one entry per set
element)
Map a mapping between two sets (e.g. cells to
dofs)
Global global data (one entry)
Kernel a piece of code to execute over the mesh

» access descriptors
» READ, RW, WRITE, INC
» iteration construct
par_loop execute a Kernel over every element in a Set
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par_loop(kernel, elements,
element_data(READ), # direct access
node_data(WRITE, elem_node), # indirect
count(INC))

» executes kernel for each ele in elements
first argument data corresponding to ele (read-only)
second argument the nodes of this ele (written)
third argument a global counter (incremented)

» runtime knows it has to care about data dependencies for

» write to node_data
» increment into elem_count
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Synthesis, not analysis

» Access descriptors on parallel loops mean:
» code generation requires synthesis, not analysis
» determination of when halo exchanges need to occur is
automatic
» colouring for shared memory parallelisation can be
computed automatically
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Exploiting structure
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Semi-structured meshes

» Many application areas have a "short" direction
» ocean and atmosphere
» thin shells
» Numerics dictate we should do something different in
short direction
» Use semi-structured meshes

» unstructured in "long" directions, structured in short
» can we exploit this structure?
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A picture of triangles
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Admits a fast implementation

» Exploit structure in mesh to amortize indirect lookups

» arrange for iteration over short direction to be innermost
loop

» pay one indirect lookup per mesh column

» walk up column directly
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Benchmarking
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A bandwidth bound test case

» Walk over mesh, read from vertices and cells, sum into
global

void kernel(double *a, double *x[], double xy[]) {
const double area = fabs(x[@J[0JI*(x[2][11-x[41[11)
+ x[2][0]*(x[41[1]-x[0I[1])
+ x[41[0]*(x[01[1]1-x[21[11));
*a += area * 0.5 * y[0][0];

» Can we sustain an appreciable fraction of memory
bandwidth?
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Measuring throughput

» "Effective" data volume
» assume every piece of data is touched exactly once (in
perfect order)
» don't count data movement for indirection maps
» effectively, just count the volume of degrees of freedom
touched
» "Valuable" bandwidth
» effective data volume per second
» Actual memory bandwidth will be higher (reading
indirection maps)
» but this is not "useful"
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Benchmark setup

» 2D unstructured mesh: 806110 cells, 403811 vertices.
» 2D coordinate field located at vertices (implicit 3rd
coordinate)
» scalar field stored at cell centres
» Run with increasing number of extruded cell layers (njayer)

> data volume (806110 * nj,yer) + 403811 * 2 (njayer + 1)
doubles

> 1 layer: 18.4MB

» 200 layers: 2468MB

» Execute kernel over mesh 100 times
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Single node

» Intel Sandybridge 4 cores (2 way hyperthreading)
» 32kB L1 cache (per core)
» 256 kB L2 cache (per core)
» 8 MB L3 cache (shared)
» Measured stream bandwidth (8 threads)
> 11341 MB/s
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Effect of good base numbering

» Being completely unstructured hurts a lot

» Compare default (mesh generator) numbering with
renumbered mesh using 2D space filling curve
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Adding layers amortizes indirection cost

» L3 cache bandwidth

» low layer numbers hit the L3 more often (indirection

lookups)
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» What about actual throughput though?

Imperial College
London



Valuable bandwidth

» Above 720 layers, indirection cost "hidden"
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More threads

» Hyperthreading gives some further gains (82% stream

bandwidth)
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Conclusions
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Possible to be unstructured and fast

» A good numbering gets you a reasonable way there
» If there is structure in your problem, use it!

» High level abstractions need not kill performance
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