
Firedrake: a multilevel domain specific
language approach to unstructured mesh

stencil computations

Lawrence Mitchell, Gheorghe-Teodor Bercea, David Ham,
Paul Kelly, Nicolas Loriant, Fabio Luporini, Florian

Rathgeber

Departments of Mathematics and Computing, Imperial College London

21 February 2014



Introduction

Maintaining abstractions

Exploiting structure

Benchmarking

Conclusions



What are we interested in?

I (Predominantly) finite element simulations
I primary application areas in geophysical fluids (ocean and

atmosphere)
I simulations on unstructured and semi-structured meshes

I Providing high-level interfaces for users, with performance

I the moon, on a stick



How does FE fit a stencils session?

I Numerics tells us the elementary operation we apply
everywhere in the mesh (a "kernel")

I Mesh topology gives us the "stencil" pattern
I Our job: efficiently apply the kernel over the whole mesh



Introduction

Maintaining abstractions

Exploiting structure

Benchmarking

Conclusions



Express what, not how

I User code should make as few decisions about
implementation as possible

I FE discretisations expressed symbolically using the Unified
Form Language

I developed in the FEniCS project
(http://www.fenicsproject.org)

I symbolic representation compiled to a C kernel
I Data to feed to kernel (and interface to solvers) provided

by Firedrake (http://www.firedrakeproject.org)
I Execution of kernel over entire domain expressed as

parallel loop with access descriptors
I uses PyOP2 unstructured mesh library

(http://github.com/OP2/PyOP2)
I implementation of loop taken out of user hands

http://www.fenicsproject.org
http://www.firedrakeproject.org
http://github.com/OP2/PyOP2


Firedrake

I High level finite element computations
I http://www.firedrakeproject.org

PyOP2
Parallel unstructured mesh
computation framework

Firedrake
A performance-portable
Finite-element computation
framework

Unified Form
Language (UFL)

PyOP2 Interface

FFC Form
Compiler

Parallel scheduling, code generation

CPU
(+MPI +

OpenMP/
OpenCL)

GPU
(CUDA /
OpenCL)

Future
arch.

Problem definition
in FEM weak form

Local assembly
kernels, data
dependencies

Parallel loops over
kernels with access
descriptors

Explicitly
parallel
hardware-
specific
implemen-
tation

Geometry,
fields and
meshes

http://www.firedrakeproject.org


An example

from firedrake import *
mesh = UnitSquareMesh(32, 32)
BDM = FunctionSpace(mesh, "BDM", 3)
DG = FunctionSpace(mesh, "DG", 2)
W = BDM * DG
sigma, u = TrialFunctions(W)
tau, v = TestFunctions(W)
f = Function(DG).interpolate(Expression(

"10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)"))
a = (dot(sigma, tau) + div(tau)*u + div(sigma)*v)*dx
L = - f*v*dx
bc0 = DirichletBC(W.sub(0), Expression(("0.0", "-sin(5*x[0])")), 1)
bc1 = DirichletBC(W.sub(0), Expression(("0.0", "sin(5*x[0])")), 2)
w = Function(W)
solve(a == L, w, bcs=[bc0, bc1])
sigma, u = w.split()



PyOP2

I A python library for unstructured mesh computations
I http://github.com/OP2/PyOP2

OpenCL CUDA

Instant PyOpenCL PyCUDA

CPU OpenMPCPU seq.

MPI

Runtime Core
partitioning, parallel scheduling

Kernels Data Access
Descriptors

Application code

Backends

Code gen

PyOP2 core

User code

http://github.com/OP2/PyOP2


PyOP2 data model

I Data types
Set e.g. cells, degrees of freedom (dofs)
Dat data defined on a Set (one entry per set

element)
Map a mapping between two sets (e.g. cells to

dofs)
Global global data (one entry)
Kernel a piece of code to execute over the mesh

I access descriptors
I READ, RW, WRITE, INC

I iteration construct
par_loop execute a Kernel over every element in a Set



Example

par_loop(kernel, elements,
element_data(READ), # direct access
node_data(WRITE, elem_node), # indirect
count(INC))

I executes kernel for each ele in elements
first argument data corresponding to ele (read-only)
second argument the nodes of this ele (written)
third argument a global counter (incremented)

I runtime knows it has to care about data dependencies for
I write to node_data
I increment into elem_count



Synthesis, not analysis

I Access descriptors on parallel loops mean:
I code generation requires synthesis, not analysis
I determination of when halo exchanges need to occur is

automatic
I colouring for shared memory parallelisation can be

computed automatically



Introduction

Maintaining abstractions

Exploiting structure

Benchmarking

Conclusions



Semi-structured meshes

I Many application areas have a "short" direction
I ocean and atmosphere
I thin shells

I Numerics dictate we should do something different in
short direction

I Use semi-structured meshes
I unstructured in "long" directions, structured in short
I can we exploit this structure?



A picture of triangles

⊗ = →



Admits a fast implementation

I Exploit structure in mesh to amortize indirect lookups
I arrange for iteration over short direction to be innermost

loop
I pay one indirect lookup per mesh column
I walk up column directly



Introduction

Maintaining abstractions

Exploiting structure

Benchmarking

Conclusions



A bandwidth bound test case

I Walk over mesh, read from vertices and cells, sum into
global

void kernel(double *a, double *x[], double *y[]) {
const double area = fabs(x[0][0]*(x[2][1]-x[4][1])

+ x[2][0]*(x[4][1]-x[0][1])
+ x[4][0]*(x[0][1]-x[2][1]));

*a += area * 0.5 * y[0][0];
}

I Can we sustain an appreciable fraction of memory
bandwidth?



Measuring throughput

I "Effective" data volume
I assume every piece of data is touched exactly once (in

perfect order)
I don’t count data movement for indirection maps
I effectively, just count the volume of degrees of freedom

touched
I "Valuable" bandwidth

I effective data volume per second
I Actual memory bandwidth will be higher (reading

indirection maps)
I but this is not "useful"



Benchmark setup

I 2D unstructured mesh: 806110 cells, 403811 vertices.
I 2D coordinate field located at vertices (implicit 3rd

coordinate)
I scalar field stored at cell centres

I Run with increasing number of extruded cell layers (nlayer)
I data volume (806110 * nlayer) + 403811 * 2 (nlayer + 1)

doubles
I 1 layer: 18.4MB
I 200 layers: 2468MB

I Execute kernel over mesh 100 times



Single node

I Intel Sandybridge 4 cores (2 way hyperthreading)
I 32kB L1 cache (per core)
I 256 kB L2 cache (per core)
I 8 MB L3 cache (shared)

I Measured stream bandwidth (8 threads)
I 11341 MB/s



Effect of good base numbering

I Being completely unstructured hurts a lot
I Compare default (mesh generator) numbering with

renumbered mesh using 2D space filling curve

1 2 3 4

Number of threads

1306

2000

3000

4000

5015

V
a

lu
a

b
le

 b
a

n
d

w
id

th
/(

M
B

/s
)

Original numbering

Good numbering



Adding layers amortizes indirection cost

I L3 cache bandwidth
I low layer numbers hit the L3 more often (indirection

lookups)

0 50 100 150 200

2129

5000

10000

15000

17392

Number of cell layers

L
3

 b
a

n
d

w
id

th
/(

M
B

/s
)

1 Thread

2 Threads

3 Threads

4 Threads

I What about actual throughput though?



Valuable bandwidth

I Above ~20 layers, indirection cost "hidden"

0 50 100 150 200

1736

4000

6000

8000

10000

11341

Number of cell layers

V
a

lu
a

b
le

 b
a

n
d

w
id

th
/(

M
B

/s
)

1 Thread

2 Threads

3 Threads

4 Threads



More threads

I Hyperthreading gives some further gains (82% stream
bandwidth)

1 2 3 4 5 6 7 8

1306

2000

4000

6000

8000

10000

11341

Number of threads

V
a

lu
a

b
le

 b
a

n
d

w
id

th
/(

M
B

/s
)

1 Layer (bad base numbering)

1 Layer

3 Layers

10 Layers

20 Layers

50 Layers

100 Layers

150 Layers

200 Layers



Introduction

Maintaining abstractions

Exploiting structure

Benchmarking

Conclusions



Possible to be unstructured and fast

I A good numbering gets you a reasonable way there
I If there is structure in your problem, use it!
I High level abstractions need not kill performance



Thanks

I Institutions
I Imperial College London
I Grantham Institute for climate change

I Funding
I NERC (NE/K008951/1, NE/K006789/1,

NE/G523512/1)
I EPSRC (EP/L000407/1, EP/K008730/1,

EP/I00677X/1)


	Introduction
	Maintaining abstractions
	Exploiting structure
	Benchmarking
	Conclusions

