Firedrake: a multilevel domain specific

language approach to unstructured mesh

stencil computations

Lawrence Mitchell, Gheorghe-Teodor Bercea, David Ham,
Paul Kelly, Nicolas Loriant, Fabio Luporini, Florian
Rathgeber

Departments of Mathematics and Computing, Imperial College London

21 February 2014

Imperial College
London

Introduction

Imperial College
London

What are we interested in?

» (Predominantly) finite element simulations

» primary application areas in geophysical fluids (ocean and
atmosphere)
» simulations on unstructured and semi-structured meshes

» Providing high-level interfaces for users, with performance

» the moon, on a stick

Imperial College
London

How does FE fit a stencils session?

» Numerics tells us the elementary operation we apply

everywhere in the mesh (a "kernel")
» Mesh topology gives us the "stencil" pattern
» Our job: efficiently apply the kernel over the whole mesh

o

IYAVATAVATav4

%

AVA%
A2
AV

2
kS
O
e
45‘%‘
)
S
e

o

VAAVAAVAN "4 TAVAY)
OIS
ok

<]

vy
SRK
O
S

(AN
vgb
Ay,
i
SRS

g,
e

w4
RO

ava
KRN
W

RS
AXNT
%

SRR
SRS
YA AV

RESKEX
SRR
DIIRRKEE

i
NN
O
&

,
<]
K
R
X\
5
X

e
K
sT
oy
ol
Sy
=
KE

KL
ez
i

X
5
1
A%
e
SV,
WL
X
%
N

"
0
s
KR
&
\

o
Rk
R
n
%

V4

%
<0G
N,
RO

RDANK
VAY.Y

)
5
TN
X
R4
e
KX
s
VaVAVAY

0
o
K]
4
<D
YA
AN
2K
e
XX

&
A

i
VaY
S
i
0
Y
A
S
v

<]
A
AVay

KR

5
YA
KX
AVA
XA
P
R
‘vd
%
Vavy
s
K

i~
2
A%
o)
11

vas
Ry
vy

ROKAY

X
V

AR

SRR
TAVATAVLYATAYAY,

PSRRI
Tari
VAVATAY v‘

oK
R
AVaYA
A

AR

&K
YaV)
YAV
v
AVaY
X
DAKK]
ST
)

K.
LT
%
X
x]

VAVAV/\VAY
=
Ay
R
RS
<X

4
RN

,m»}%}g?ﬁﬁ','

SKERR

S vavi

=
RRCK
AV

%
TN
R

A

PRI

Imperial College
London

Maintaining abstractions

Imperial College
London

Express what, not how

» User code should make as few decisions about
implementation as possible
» FE discretisations expressed symbolically using the Unified
Form Language
» developed in the FEniCS project
(http://www.fenicsproject.org)
» symbolic representation compiled to a C kernel
» Data to feed to kernel (and interface to solvers) provided
by Firedrake (http://www.firedrakeproject.org)
» Execution of kernel over entire domain expressed as
parallel loop with access descriptors
» uses PyOP2 unstructured mesh library
(http://github.com/0OP2/PyOP2)
» implementation of loop taken out of user hands

Imperial College
London

http://www.fenicsproject.org
http://www.firedrakeproject.org
http://github.com/OP2/PyOP2

Firedrake

» High level finite element computations
» http://www.firedrakeproject.org

Unified Form
Firedrake Language (UFL)

A performance-portable Problem definition!
Finite-element computation in FEM weak form
framework
FFC Form
Geometry, .
fields and Compiler

meshes Local assembly
kernels, data
dependencies

PyOP2 Interface
pyo P2 Parallel loops over

Parallel unstructured mesh| kernels with access
computation framework descriptors

Parallel scheduling, code generation

Explicitly
CPU parallel

(+MPI + hard\'nfllare-
specific

OpenMP/ implemen-

OpenCL) tation

Imperial College
London

http://www.firedrakeproject.org

An example

from firedrake import =*

mesh = UnitSquareMesh(32, 32)

BDM = FunctionSpace(mesh, "BDM", 3)
DG = FunctionSpace(mesh, "DG", 2)

W = BDM * DG
sigma, u = TrialFunctions(W)
tau, v = TestFunctions(W)

f = Function(DG).interpolate(Expression(
"10xexp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)"))
a = (dot(sigma, tau) + div(tau)xu + div(sigma)*v)=*dx
L = - fxvxdx
bc@® = DirichletBC(W.sub(@), Expression(("0.0", "-sin(5%*x[0@]1)")), 1)
bc1 = DirichletBC(W.sub(@), Expression(("0.0", "sin(5*x[@1)")), 2)
w = Function(W)
solve(a == L, w, bcs=[bc@, bcl])
sigma, u = w.split()

Imperial College
London

PyOP2

» A python library for unstructured mesh computations
» http://github.com/0P2/PyOP2

User code

Access
Descriptors

Application code

PyOP2 core

Runtime Core
partitioning, parallel scheduling

Instant PyOpenCL PyCUDA

Imperial College
London

http://github.com/OP2/PyOP2

PyOP2 data model

» Data types
Set e.g. cells, degrees of freedom (dofs)
Dat data defined on a Set (one entry per set
element)
Map a mapping between two sets (e.g. cells to
dofs)
Global global data (one entry)
Kernel a piece of code to execute over the mesh

» access descriptors
» READ, RW, WRITE, INC
» iteration construct
par_loop execute a Kernel over every element in a Set

Imperial College
London

par_loop(kernel, elements,
element_data(READ), # direct access
node_data(WRITE, elem_node), # indirect
count(INC))

» executes kernel for each ele in elements
first argument data corresponding to ele (read-only)
second argument the nodes of this ele (written)
third argument a global counter (incremented)

» runtime knows it has to care about data dependencies for

» write to node_data
» increment into elem_count

Imperial College
London

Synthesis, not analysis

» Access descriptors on parallel loops mean:
» code generation requires synthesis, not analysis
» determination of when halo exchanges need to occur is
automatic
» colouring for shared memory parallelisation can be
computed automatically

Imperial College
London

Exploiting structure

Imperial College
London

Semi-structured meshes

» Many application areas have a "short" direction
» ocean and atmosphere
» thin shells
» Numerics dictate we should do something different in
short direction
» Use semi-structured meshes

» unstructured in "long" directions, structured in short
» can we exploit this structure?

Imperial College
London

A picture of triangles

>
=
PO

Imperial College
London

Admits a fast implementation

» Exploit structure in mesh to amortize indirect lookups

» arrange for iteration over short direction to be innermost
loop

» pay one indirect lookup per mesh column

» walk up column directly

Imperial College
London

Benchmarking

Imperial College
London

A bandwidth bound test case

» Walk over mesh, read from vertices and cells, sum into
global

void kernel(double *a, double *x[], double xy[]) {
const double area = fabs(x[@J[0JI*(x[2][11-x[41[11)
+ x[2][0]*(x[41[1]-x[0I[1])
+ x[41[0]*(x[01[1]1-x[21[11));
*a += area * 0.5 * y[0][0];

» Can we sustain an appreciable fraction of memory
bandwidth?

Imperial College
London

Measuring throughput

» "Effective" data volume
» assume every piece of data is touched exactly once (in
perfect order)
» don't count data movement for indirection maps
» effectively, just count the volume of degrees of freedom
touched
» "Valuable" bandwidth
» effective data volume per second
» Actual memory bandwidth will be higher (reading
indirection maps)
» but this is not "useful"

Imperial College
London

Benchmark setup

» 2D unstructured mesh: 806110 cells, 403811 vertices.
» 2D coordinate field located at vertices (implicit 3rd
coordinate)
» scalar field stored at cell centres
» Run with increasing number of extruded cell layers (njayer)

> data volume (806110 * nj,yer) + 403811 * 2 (njayer + 1)
doubles

> 1 layer: 18.4MB

» 200 layers: 2468MB

» Execute kernel over mesh 100 times

Imperial College
London

Single node

» Intel Sandybridge 4 cores (2 way hyperthreading)
» 32kB L1 cache (per core)
» 256 kB L2 cache (per core)
» 8 MB L3 cache (shared)
» Measured stream bandwidth (8 threads)
> 11341 MB/s

Imperial College
London

Effect of good base numbering

» Being completely unstructured hurts a lot

» Compare default (mesh generator) numbering with
renumbered mesh using 2D space filling curve

5015 7 e Original numbering

= Good numbering ..

4000 — -

3000 — .

.
o’ / —_—
2000

1306 —

Valuable bandwidth/(MB/s)
\

Number of threads

Imperial College
London

Adding layers amortizes indirection cost

» L3 cache bandwidth

» low layer numbers hit the L3 more often (indirection

lookups)
179z o 4 —o— 1 Thread
¢ —&— 2 Threads
15000 - ! —— 3 Threads
| —A— 4 Threads
— L]
g "
g b
= :\
S 10000 A e Am i mim = A== — - A
H 8N s - - A -
k] bl A
3 L S S @ *
2 e .. .
i
\
5000 | rk.____- ------- - ---- [P .
.\. . .
2129 - i o e
r T T . ,
0 50 100 150 200

Number of cell layers

» What about actual throughput though?

Imperial College
London

Valuable bandwidth

» Above 720 layers, indirection cost "hidden"

1341 9 —o— 1 Thread
—a— 2 Threads
10000 — —o— 3 Threads
@ —A— 4 Threads
< 8000 — _A—=mm —A - - - A - - -
£ -
k] A A~
% ! * P I *
2 1 T S L SERRREETEREEEE
% 6000 - A o .
8 »
= -l —-—- - - B - [[]
S 4000 | w m-m-- "
./
® o—gq—*—— /.—.
1736 4 o7 .
[T T T |
0 50 100 150 200

Number of cell layers

Imperial College
London

More threads

» Hyperthreading gives some further gains (82% stream

bandwidth)

1341 a4 Layer (bad base numbering)
—— 1 Layer
10000 — 3 Layers

10 Layers

-
— ——
2 20 Layers _
= gooo ——® 50 Layers 'l
£ 100 Layers —_—
.‘g —A— 150 Layers / °
200 Layers
2 6000 | Y / u o
a /
E / . .
| 4000
s /
A A
2000 :4 __—*
1306 — 4
\ \ \ \ \ \ 1
1 2 3 4 5 6 7 8

Number of threads

Imperial College
London

Conclusions

Imperial College
London

Possible to be unstructured and fast

» A good numbering gets you a reasonable way there
» If there is structure in your problem, use it!

» High level abstractions need not kill performance

Imperial College
London

» |Institutions

» Imperial College London
» Grantham Institute for climate change
» Funding
» NERC (NE/K008951/1, NE/K006789/1,
NE/G523512/1)
» EPSRC (EP/L000407/1, EP/K008730/1,
EP/100677X/1)

Imperial College
London

	Introduction
	Maintaining abstractions
	Exploiting structure
	Benchmarking
	Conclusions

