Hi Sander, I find the easiest and most robust thing to do with these systems is just to pin the pressure at a single point. That way you can use LU as you like, and can focus on debugging the discretisation instead of the discretisation + solver together. It's not so straightforward to do this in firedrake. Here's some code I have lying around that does this (probably written by Lawrence?): class PressureFixBC(DirichletBC): def __init__(self, V, val, subdomain, method="topological"): super().__init__(V, val, subdomain, method) sec = V.dm.getDefaultSection() dm = V.mesh()._plex coordsSection = dm.getCoordinateSection() coordsDM = dm.getCoordinateDM() dim = coordsDM.getDimension() coordsVec = dm.getCoordinatesLocal() (vStart, vEnd) = dm.getDepthStratum(0) indices = [] for pt in range(vStart, vEnd): x = dm.getVecClosure(coordsSection, coordsVec, pt).reshape(-1, dim).mean(axis=0) if x.dot(x) == 0.0: # fix [0, 0] in original mesh coordinates (bottom left corner) if dm.getLabelValue("pyop2_ghost", pt) == -1: indices = [pt] break nodes = [] for i in indices: if sec.getDof(i) > 0: nodes.append(sec.getOffset(i)) self.nodes = numpy.asarray(nodes, dtype=IntType) print("Fixing nodes %s" % self.nodes) Use like bc = PressureFixBC(Z.sub(2), 0, 1). (The 1 is just a dummy label, it's needed for the constructor but not used in the code.) If you're not on a unit square, then you'd need to change the conditional x.dot(x) == 0.0 to something else. (The reason why I search by coordinate is to pin the same value on every level of a multigrid hierarchy.) Hope this helps! Patrick On 27/08/2019 16:16, Sander Rhebergen wrote:
Hi Matt,
Thanks for the explanation. I'm new to this formulation as well and not sure about the best way to address the solver part, but I will try out your suggestions.
Sander
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ *From:* firedrake-bounces@imperial.ac.uk <firedrake-bounces@imperial.ac.uk> on behalf of firedrake-request@imperial.ac.uk <firedrake-request@imperial.ac.uk> *Sent:* Tuesday, August 27, 2019 7:00 AM *To:* firedrake@imperial.ac.uk *Subject:* firedrake Digest, Vol 32, Issue 9 Send firedrake mailing list submissions to firedrake@imperial.ac.uk
To subscribe or unsubscribe via the World Wide Web, visit https://mailman.ic.ac.uk/mailman/listinfo/firedrake or, via email, send a message with subject or body 'help' to firedrake-request@imperial.ac.uk
You can reach the person managing the list at firedrake-owner@imperial.ac.uk
When replying, please edit your Subject line so it is more specific than "Re: Contents of firedrake digest..."
Today's Topics:
1. nullspace within nonlinearvariationalsolver? (Sander Rhebergen) 2. Re: nullspace within nonlinearvariationalsolver? (Matthew Knepley)
----------------------------------------------------------------------
Message: 1 Date: Mon, 26 Aug 2019 21:37:11 +0000 From: Sander Rhebergen <srhebergen@uwaterloo.ca> To: "firedrake@imperial.ac.uk" <firedrake@imperial.ac.uk> Subject: [firedrake] nullspace within nonlinearvariationalsolver? Message-ID: <d728cc7c78d84497a4a45da641289f9d@uwaterloo.ca> Content-Type: text/plain; charset="iso-8859-1"
Hello,
Is it possible to set a constant nullspace for a NonlinearVariationalSolver?
I tried the following:
order = 2 V3 = FunctionSpace(mesh, "CG", order) V1 = FunctionSpace(mesh, "BDM", order) V2 = FunctionSpace(mesh, "DG", order-1) W = MixedFunctionSpace([V3, V1, V2]) v_basis = VectorSpaceBasis(constant=True) null_space = MixedVectorSpaceBasis(W, [W.sub(0), W.sub(1), v_basis])
# Build Nonlinear Solver uprob = NonlinearVariationalProblem(L, w1) usolver = NonlinearVariationalSolver(uprob, nullspace=null_space, solver_parameters = { 'snes_max_it': '50', 'snes_rtol': '1e-12', 'mat_type': 'aij', 'ksp_type': 'preonly', 'pc_type': 'lu', 'snes_monitor': True, 'snes_view': False, 'snes_converged_reason': True, 'ksp_converged_reason': True})
but the linear solver did not converge:
0 SNES Function norm 7.964422825545e-02 Linear firedrake_1_ solve did not converge due to DIVERGED_PCSETUP_FAILED iterations 0 PCSETUP_FAILED due to FACTOR_NUMERIC_ZEROPIVOT Nonlinear firedrake_1_ solve did not converge due to DIVERGED_LINEAR_SOLVE iterations 0
I can send the full code if necessary. I'm trying to solve Navier-Stokes in velocity-vorticity-pressure formulation (https://arxiv.org/pdf/1604.00257.pdf) but the solver doesn't converge. If I add a small parameter times a pressure mass-matrix, the solver converges, but I was hoping to avoid doing this.
Thanks,
Sander
-------------- next part -------------- HTML attachment scrubbed and removed
------------------------------
Message: 2 Date: Mon, 26 Aug 2019 18:58:00 -0400 From: Matthew Knepley <knepley@gmail.com> To: Sander Rhebergen <srhebergen@uwaterloo.ca> Cc: "firedrake@imperial.ac.uk" <firedrake@imperial.ac.uk> Subject: Re: [firedrake] nullspace within nonlinearvariationalsolver? Message-ID: <CAMYG4Gm1rLmrZX8otNz+5YB8BpV6djXzsU2HPDUshAKjYHxNmQ@mail.gmail.com> Content-Type: text/plain; charset="utf-8"
On Mon, Aug 26, 2019 at 5:37 PM Sander Rhebergen <srhebergen@uwaterloo.ca> wrote:
Hello,
Is it possible to set a constant nullspace for a NonlinearVariationalSolver?
I tried the following:
order = 2 V3 = FunctionSpace(mesh, "CG", order) V1 = FunctionSpace(mesh, "BDM", order) V2 = FunctionSpace(mesh, "DG", order-1) W = MixedFunctionSpace([V3, V1, V2]) v_basis = VectorSpaceBasis(constant=True) null_space = MixedVectorSpaceBasis(W, [W.sub(0), W.sub(1), v_basis])
# Build Nonlinear Solver uprob = NonlinearVariationalProblem(L, w1) usolver = NonlinearVariationalSolver(uprob, nullspace=null_space, solver_parameters = { 'snes_max_it': '50', 'snes_rtol': '1e-12', 'mat_type': 'aij', 'ksp_type': 'preonly', 'pc_type': 'lu', 'snes_monitor': True, 'snes_view': False, 'snes_converged_reason': True, 'ksp_converged_reason': True})
but the linear solver did not converge:
0 SNES Function norm 7.964422825545e-02 Linear firedrake_1_ solve did not converge due to DIVERGED_PCSETUP_FAILED iterations 0 PCSETUP_FAILED due to FACTOR_NUMERIC_ZEROPIVOT Nonlinear firedrake_1_ solve did not converge due to DIVERGED_LINEAR_SOLVE iterations 0
HI Sander,
Even if you set a nullspace here, you will get the same error because the null space is not projected out, we just know about it, thus LU will still fail. Getting the projected matrix would be prohibitively expensive (I assume). Just to make sure, the nullspace is constant pressure, right? I suggest either
a) Using a Schur complement scheme, sticking the pressure mass matrix as the PC matrix, and then using LU
or
b) Using monolithic multigrid since you can use SVD on the coarse grid with no problem
Or am I misunderstanding something. I have never used the VVP formulation.
Thanks,
Matt
I can send the full code if necessary. I'm trying to solve Navier-Stokes in velocity-vorticity-pressure formulation ( https://arxiv.org/pdf/1604.00257.pdf) but the solver doesn't converge. If I add a small parameter times a pressure mass-matrix, the solver converges, but I was hoping to avoid doing this.
Thanks,
Sander
_______________________________________________ firedrake mailing list firedrake@imperial.ac.uk https://mailman.ic.ac.uk/mailman/listinfo/firedrake
-- What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead. -- Norbert Wiener
https://www.cse.buffalo.edu/~knepley/ <http://www.cse.buffalo.edu/~knepley/> -------------- next part -------------- HTML attachment scrubbed and removed
------------------------------
_______________________________________________ firedrake mailing list firedrake@imperial.ac.uk https://mailman.ic.ac.uk/mailman/listinfo/firedrake
End of firedrake Digest, Vol 32, Issue 9 ****************************************
_______________________________________________ firedrake mailing list firedrake@imperial.ac.uk https://mailman.ic.ac.uk/mailman/listinfo/firedrake