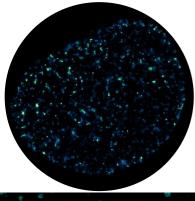


Into the Nanoworld

28th May 2019 hr 11.00 LMS Seminar room, 2nd floor CWB

Breaking the resolution limit of conventional microscopy opened the way to investigation of cellular structures at the nanoscale, from individual proteins to entire organelles. Still nanoscopy is not that accessible as the entire imaging workflow requires multidisciplinary knowhow.


abbelight accompanies researchers from the design of their projects to the final analyzed data.

We offer reagents and buffers for sample preparation; robust innovative instruments allowing 3D multicolour nanoscopy; user-friendly software to produce better reliable data; time, support and expertise throughout all the process.

In particular abbelight developed a new nanoscope allowing precise isotropic 3D localization precision (15X15X15nm) by decoupling the lateral and axial detection. For the latter, two different sources of axial information are retained: the supercritical angle fluorescence (SAF) that provides an absolute measurement allowing an extended axial depth (up to $5\mu m$).

Furthermore SMLM is limited to a homogeneous field of view (FOV) of approximately $30 \times 30 \mu m$ due to illumination and/or detection constraints, abbelight developed a new excitation solution allowing to homogeneously illuminate the entire chip of sCMOS

Thus, nanoscopy can be accessible, to gain more details in 3D, in multicolor and to extract quantitative information in an high-throughput manner.

abbelight is here to help you speed up not only data acquisition but the full imaging workflow.

For more info: vcaorsi@abbelight www.abbelight.com